Home

Awesome

ClinicalMamba

This repository contains the implementation of prompt-based fine-tuning ClinicalMamba on n2c2 2018 shared task 1: Cohort Selection for Clinical Trials. This is a classification task that identifies which patients meet and do not meet the identified selection criteria given in their longitudinal clinical notes.

The ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes paper contains 2 unique ClinicalMamba models with different number of parameters: clinicalmamba-2.8b-hf and clinicalmamba-130m-hf.

Dependencies

Full environment setting is lised here and can be installed through:

conda env create -f conda-environment.yaml
conda activate mamba_env

Download / preprocess data

  1. Download raw n2c2 data folder train and n2c2-t1_gold_standard_test_data, and put them under ./data
  2. Proprcesss the data by running the notebook: ./preprocess/preprocess.ipynb. It will transform from xml to json format, where each instance is a dictionary input is 'text' and output should start with ‘label’. Example in image below:
  3. Define your labels and associated prompts here ./config_labels.py. Example in image below:
  4. The model then learns to assign token yes or no to each prompt.

Train and Eval

To finetune on Cohort Selection for Clinical Trials with 2.8b model:

CUDA_VISIBLE_DEVICES=0 python main-hf.py \
                --seed 3407 --data_seed 3407 --ddp_find_unused_parameters False \
                --data_path ./data \
                --config_name whaleloops/clinicalmamba-2.8b-hf \
                --tokenizer_name whaleloops/clinicalmamba-2.8b-hf \
                --model_name_or_path whaleloops/clinicalmamba-2.8b-hf \
                --do_train --do_eval --max_seq_length 15004 \
                --per_device_train_batch_size 1 --gradient_accumulation_steps 8 --per_device_eval_batch_size 1 \
                --adam_beta1 0.9 --adam_beta2 0.95 --adam_epsilon 1e-5  \
                --learning_rate 0.000245 --weight_decay 1e-2 --num_train_epochs 12 \
                --lr_scheduler_type linear --warmup_ratio 0.15 \
                --logging_steps 50 \
                --evaluation_strategy epoch --save_strategy no \
                --logging_first_step \
                --output_dir ./saved_models/clinicalmamba-test01-hf

For 130m model

CUDA_VISIBLE_DEVICES=0 python main-hf.py \
                --seed 3407 --data_seed 3407 --ddp_find_unused_parameters False \
                --data_path ./data \
                --config_name PATH_TO_HF_MODEL/clinicalmamba-130m-hf \
                --tokenizer_name PATH_TO_HF_MODEL/clinicalmamba-130m-hf \
                --model_name_or_path PATH_TO_HF_MODEL/clinicalmamba-130m-hf \
                --do_train --do_eval --max_seq_length 15004 \
                --per_device_train_batch_size 2 --gradient_accumulation_steps 4 --per_device_eval_batch_size 2 \
                --adam_beta1 0.9 --adam_beta2 0.95 --adam_epsilon 1e-5  \
                --learning_rate 0.000445 --weight_decay 1e-2 --num_train_epochs 12 \
                --lr_scheduler_type linear --warmup_ratio 0.15 \
                --logging_steps 50 \
                --evaluation_strategy epoch --save_strategy no \
                --logging_first_step \
                --output_dir ./saved_models/clinicalmamba-test02-hf

Citation

@misc{yang2024clinicalmamba,
      title={ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes}, 
      author={Zhichao Yang and Avijit Mitra and Sunjae Kwon and Hong Yu},
      year={2024},
      eprint={2403.05795},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

See the LICENSE file for more details.