Home

Awesome

Junction Tree Variational Autoencoder for Molecular Graph Generation

Official implementation of our Junction Tree Variational Autoencoder https://arxiv.org/abs/1802.04364

Update

We have made architecture improvements to JT-VAE. We recommend you to check our new repository at https://github.com/wengong-jin/hgraph2graph/. This repo contains a molecular language model pre-trained on ChEMBL (1.8 million compounds) and scripts for property-guided molecule generation. All scripts are written in python 3.7 and pytorch.

Accelerated Version

We have accelerated our code! The new code is in fast_jtnn/, and the VAE training script is in fast_molvae/. Please refer to fast_molvae/README.md for details.

Requirements

To install RDKit, please follow the instructions here http://www.rdkit.org/docs/Install.html

We highly recommend you to use conda for package management.

Quick Start

The following directories contains the most up-to-date implementations of our model:

The following directories provides scripts for the experiments in our original ICML paper:

Contact

Wengong Jin (wengong@csail.mit.edu)