Awesome
CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection
This repo is the official implementation of "CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection (IEEE TIP 2024)".
Installation
conda create -n md python=3.7 -y
conda activate md
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.1/index.html
cd CSFwinformer
pip install -e .
pip install -r requirements/optional.txt
mkdir data
Data Preparation
You can download zip files for corresponding three datasets from "here"
Train
python tools/train.py configs/mirror/pmd_mirror_swin_small.py
Test
python ./tools/test.py configs/mirror/pmd_mirror_swin_small.py work_dirs/pmd_mirror_swin_small/your_weight --show-dir ./results/pmd --eval mIoU
Results and Models
Dataset | Backbone | IoU↑ | Acc↑ | $F_β$↑ | MAE↓ | BER↓ |
---|---|---|---|---|---|---|
PMD | swin_s | 69.84 | 77.28 | 0.849 | 0.024 | 11.91 |
PMD | swin_b | 70.05 | 78.27 | 0.838 | 0.024 | 11.41 |
MSD | swin_s | 82.13 | 88.72 | 0.895 | 0.046 | 7.15 |
MSD | swin_b | 82.08 | 88.92 | 0.896 | 0.045 | 7.14 |
RGBD-Mirror | swin_b | 78.66 | 84.64 | 0.900 | 0.031 | 8.57 |
You can find all weights from "here"
Citation
If you find this repo useful for your research, please consider citing our paper:
@ARTICLE{10462920,
author={Xie, Zhifeng and Wang, Sen and Yu, Qiucheng and Tan, Xin and Xie, Yuan},
journal={IEEE Transactions on Image Processing},
title={CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection},
year={2024},
volume={33},
number={},
pages={1853-1867},
keywords={Mirrors;Feature extraction;Transformers;Frequency-domain analysis;Visualization;Semantics;Image segmentation;Mirror detection;texture analysis;cross-modality learning;frequency learning},
doi={10.1109/TIP.2024.3372468}}