Home

Awesome

CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection

This repo is the official implementation of "CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection (IEEE TIP 2024)".

Installation

conda create -n md python=3.7 -y
conda activate md

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.1/index.html

cd CSFwinformer

pip install -e .
pip install -r requirements/optional.txt

mkdir data

Data Preparation

"MSD"

"PMD"

"RGBD-Mirror"

You can download zip files for corresponding three datasets from "here"

Train

python tools/train.py configs/mirror/pmd_mirror_swin_small.py

Test

python ./tools/test.py configs/mirror/pmd_mirror_swin_small.py work_dirs/pmd_mirror_swin_small/your_weight --show-dir ./results/pmd --eval mIoU

Results and Models

DatasetBackboneIoU↑Acc↑$F_β$↑MAE↓BER↓
PMDswin_s69.8477.280.8490.02411.91
PMDswin_b70.0578.270.8380.02411.41
MSDswin_s82.1388.720.8950.0467.15
MSDswin_b82.0888.920.8960.0457.14
RGBD-Mirrorswin_b78.6684.640.9000.0318.57

You can find all weights from "here"

Citation

If you find this repo useful for your research, please consider citing our paper:

@ARTICLE{10462920,
  author={Xie, Zhifeng and Wang, Sen and Yu, Qiucheng and Tan, Xin and Xie, Yuan},
  journal={IEEE Transactions on Image Processing}, 
  title={CSFwinformer: Cross-Space-Frequency Window Transformer for Mirror Detection}, 
  year={2024},
  volume={33},
  number={},
  pages={1853-1867},
  keywords={Mirrors;Feature extraction;Transformers;Frequency-domain analysis;Visualization;Semantics;Image segmentation;Mirror detection;texture analysis;cross-modality learning;frequency learning},
  doi={10.1109/TIP.2024.3372468}}