Awesome
<table style="width:100%"> <tr> <td> <img src="https://user-images.githubusercontent.com/26833433/61591130-f7beea00-abc2-11e9-9dc0-d6abcf41d713.jpg"> </td> <td align="center"> <a href="https://www.ultralytics.com" target="_blank"> <img src="https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width="160"></a> <img src="https://user-images.githubusercontent.com/26833433/61591093-2b4d4480-abc2-11e9-8b46-d88eb1dabba1.jpg"> <a href="https://itunes.apple.com/app/id1452689527" target="_blank"> <img src="https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width="180"></a> </td> <td> <img src="https://user-images.githubusercontent.com/26833433/61591100-55066b80-abc2-11e9-9647-52c0e045b288.jpg"> </td> </tr> </table>Introduction
This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.
Description
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.
Requirements
Python 3.7 or later with all of the pip install -U -r requirements.txt
packages including:
torch >= 1.4
opencv-python
Pillow
All dependencies are included in the associated docker images. Docker requirements are:
- Nvidia Driver >= 440.44
- Docker Engine - CE >= 19.03
Tutorials
- Train Custom Data < highly recommended!!
- Train Single Class
- Google Colab Notebook with quick training, inference and testing examples
- GCP Quickstart
- Docker Quickstart Guide
- A TensorRT Implementation of YOLOv3-SPP
Training
Start Training: python3 train.py
to begin training after downloading COCO data with data/get_coco2017.sh
. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
Resume Training: python3 train.py --resume
to resume training from weights/last.pt
.
Plot Training: from utils import utils; utils.plot_results()
Image Augmentation
datasets.py
applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a mosaic dataloader (pictured below) to increase image variability during training.
Speed
https://cloud.google.com/deep-learning-vm/
Machine type: preemptible n1-standard-16 (16 vCPUs, 60 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with Nvidia Apex FP16/32
HDD: 1 TB SSD
Dataset: COCO train 2014 (117,263 images)
Model: yolov3-spp.cfg
Command: python3 train.py --img 416 --batch 32 --accum 2
GPU | n | --batch --accum | img/s | epoch<br>time | epoch<br>cost |
---|---|---|---|---|---|
K80 | 1 | 32 x 2 | 11 | 175 min | $0.58 |
T4 | 1<br>2 | 32 x 2<br>64 x 1 | 41<br>61 | 48 min<br>32 min | $0.28<br>$0.36 |
V100 | 1<br>2 | 32 x 2<br>64 x 1 | 122<br>178 | 16 min<br>11 min | $0.23<br>$0.31 |
2080Ti | 1<br>2 | 32 x 2<br>64 x 1 | 81<br>140 | 24 min<br>14 min | -<br>- |
Inference
python3 detect.py --source ...
- Image:
--source file.jpg
- Video:
--source file.mp4
- Directory:
--source dir/
- Webcam:
--source 0
- RTSP stream:
--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
- HTTP stream:
--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg
YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt
<img src="https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width="500">
YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt
<img src="https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width="500">
YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt
<img src="https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width="500">
Pretrained Weights
Download from: https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0
Darknet Conversion
$ git clone https://github.com/ultralytics/yolov3 && cd yolov3
# convert darknet cfg/weights to pytorch model
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'
# convert cfg/pytorch model to darknet weights
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'
mAP
<i></i> | Size | COCO mAP<br>@0.5...0.95 | COCO mAP<br>@0.5 |
---|---|---|---|
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics | 320 | 14.0<br>28.7<br>30.5<br>37.7 | 29.1<br>51.8<br>52.3<br>56.8 |
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics | 416 | 16.0<br>31.2<br>33.9<br>41.2 | 33.0<br>55.4<br>56.9<br>60.6 |
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics | 512 | 16.6<br>32.7<br>35.6<br>42.6 | 34.9<br>57.7<br>59.5<br>62.4 |
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>YOLOv3-SPP-ultralytics | 608 | 16.6<br>33.1<br>37.0<br>43.1 | 35.4<br>58.2<br>60.7<br>62.8 |
- mAP@0.5 run at
--iou-thr 0.5
, mAP@0.5...0.95 run at--iou-thr 0.7
- Darknet results: https://arxiv.org/abs/1804.02767
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment
Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
all 5e+03 3.51e+04 0.373 0.744 0.637 0.491
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.454
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.644
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.497
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.270
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.504
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.599
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.668
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.502
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.724
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.805
Speed: 21.3/3.0/24.4 ms inference/NMS/total per 640x640 image at batch-size 16
<!-- Speed: 12.2/2.3/14.5 ms inference/NMS/total per 608x608 image at batch-size 1
# Reproduce Our Results
This command trains `yolov3-spp.cfg` from scratch to our mAP above. Training takes about one week on a 2080Ti.
```bash
$ python3 train.py --weights '' --cfg yolov3-spp.cfg --epochs 300 --batch 16 --accum 4 --multi
```
<img src="https://user-images.githubusercontent.com/26833433/77986559-408b7e80-72cc-11ea-9c4f-5d7820840a98.png" width="900">
# Reproduce Our Environment
To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
- **Google Colab Notebook** with 12 hours of free GPU time: [Google Colab Notebook](https://colab.research.google.com/drive/1G8T-VFxQkjDe4idzN8F-hbIBqkkkQnxw)
- **Docker Image** from https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)
# Citation
[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
# Contact
**Issues should be raised directly in the repository.** For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.