Home

Awesome

Mamba x JAX

Unofficial Implementation of "Mamba: Linear-Time Sequence Modeling with Selective State Spaces" in JAX.

⚠️ This is very much a work-in-progress implementation. Expect numerical mismatches, slower speeds, bad code, and general wrongness herein. ⚠️

Installation

As the plan is to eventually write custom Pallas kernels for the Mamba recurrence scan, we need to install requirements that work with Pallas.

Unfortunately, Pallas is currently quite hard to install (see this issue) and the required options can't be fully specified in a requirements.txt file. So, to setup the environment for this repository, take the following steps:

  1. Create a Python 3.9 or 3.10 virtual environment.
  2. Run install-requirements.txt and ensure none of the commands fail.

Such a kernel does not exist yet, and it is not clear how it would be implemented. However, I optimistically pin the versions for now.

Usage

Sampling

The script sample.py is the main entry point to sample from a pretrained Mamba model:

usage: sample.py [-h] [--prompt PROMPT] [--model MODEL] [--bf16] [--gen_len GEN_LEN]
                 [--temperature TEMPERATURE] [--seed SEED] [--seed_iters SEED_ITERS]
                 [--scan]

options:
  -h, --help            show this help message and exit
  --prompt PROMPT       Starting prompt for generation. (default: Aloha, World! )
  --model MODEL         Model repo id as on Huggingface Hub. (default: state-
                        spaces/mamba-2.8b)
  --bf16                Use bfloat16 for inference (default: False)
  --gen_len GEN_LEN     Length of generated sequence. (default: 1024)
  --temperature TEMPERATURE
                        Sampling temperature. (default: 1.0)
  --seed SEED           Random seed for PRNG initialisation. (default: 0)
  --seed_iters SEED_ITERS
                        Number of seeds to generate, starting from --seed. (default: 1)
  --scan                Use jax.lax.scan version of generate loop. (default: False)

Training

The script train.py can be used the MambaLLM for next token prediction. Currently, it only supports Text8 style datasets (search for afmck/text8 on the Huggingface hub) for next-character prediction. Further dataset support will come later, though it should be trivial to add this.

⚠️ Training is still experimental and may contain mistakes. Currently it converges but it is unclear if it is performing as well as it should. We also do not have (yet) a custom kernel for efficient training, like in the original implementation. ⚠️

Usage is as follows:

usage: train.py [-h] [--bf16] [--seed SEED] [--max_steps MAX_STEPS]
                [--log_freq LOG_FREQ] [--eval_freq EVAL_FREQ]
                [--eval_iters EVAL_ITERS] [--save_freq SAVE_FREQ] [--wandb]
                [--dataset DATASET] [--batch_size BATCH_SIZE]
                [--micro_batch_size MICRO_BATCH_SIZE]
                [--num_workers NUM_WORKERS]
                [--sequence_length SEQUENCE_LENGTH]
                [--learning_rate LEARNING_RATE]
                [--end_learning_rate END_LEARNING_RATE]
                [--warmup_start_lr WARMUP_START_LR]
                [--warmup_proportion WARMUP_PROPORTION]
                [--weight_decay WEIGHT_DECAY] [--max_grad_norm MAX_GRAD_NORM]
                [--use_lr_scheduler] [--beta1 BETA1] [--beta2 BETA2]
                [--dim DIM] [--num_layers NUM_LAYERS]
                [--vocab_size VOCAB_SIZE] [--state_dim STATE_DIM]
                [--kernel_size KERNEL_SIZE] [--expand EXPAND]
                [--dt_rank DT_RANK] [--dt_min DT_MIN] [--dt_max DT_MAX]
                [--dt_init DT_INIT] [--dt_scale DT_SCALE]
                [--dt_init_floor DT_INIT_FLOOR] [--no_conv_bias] [--bias]
                [--kernel_mode KERNEL_MODE] [--pad_vocab_mult PAD_VOCAB_MULT]
                [--norm_eps NORM_EPS] [--res_in_bf16]

options:
  -h, --help            show this help message and exit
  --bf16                Use bfloat16 for training (default: False)
  --seed SEED           Random seed for PRNG initialisation. (default: 0)
  --max_steps MAX_STEPS
                        Number of training steps. (default: 10000)
  --log_freq LOG_FREQ   Frequency of logging train metrics. (default: 10)
  --eval_freq EVAL_FREQ
                        Frequency of evaluation phase. (default: 1000)
  --eval_iters EVAL_ITERS
                        Number of iterations during evaluation phase. Defaults
                        to 0, which uses the entire evalulation dataset.
                        (default: 0)
  --save_freq SAVE_FREQ
                        Frequency of saving checkpoint. (default: 1000)
  --wandb               Log metrics to Weights & Biases. (default: False)
  --dataset DATASET     Dataset to use as on Huggingface hub. (default:
                        afmck/text8-chunked1024)
  --batch_size BATCH_SIZE
                        Batch size for training. (default: 8)
  --micro_batch_size MICRO_BATCH_SIZE
                        Micro batch size, used to calculate gradient
                        accumulation steps. If None, becomes equal to
                        `batch_size` (default: None)
  --num_workers NUM_WORKERS
                        Number of worker processes for data loading. (default:
                        4)
  --sequence_length SEQUENCE_LENGTH
                        Sequence length for training. (default: 1024)
  --learning_rate LEARNING_RATE
                        Initial learning rate after warmup phase. (default:
                        0.0006)
  --end_learning_rate END_LEARNING_RATE
                        End learning rate. (default: 1e-06)
  --warmup_start_lr WARMUP_START_LR
                        Warmup start learning rate. (default: 1e-05)
  --warmup_proportion WARMUP_PROPORTION
                        Proportion of warmup steps out of total steps.
                        (default: 0.1)
  --weight_decay WEIGHT_DECAY
                        Weight decay for the optimizer. (default: 0.1)
  --max_grad_norm MAX_GRAD_NORM
                        Maximum gradient norm for gradient clipping. (default:
                        1.0)
  --use_lr_scheduler    Use learning rate scheduler. (default: False)
  --beta1 BETA1         Adam beta1. (default: 0.9)
  --beta2 BETA2         Adam beta2. (default: 0.95)
  --dim DIM             Model dimension. (default: 1024)
  --num_layers NUM_LAYERS
                        Number of layers. (default: 32)
  --vocab_size VOCAB_SIZE
                        Vocab size of the model. (default: 50257)
  --state_dim STATE_DIM
                        State size of SSM model. (default: 16)
  --kernel_size KERNEL_SIZE
                        Kernel size of Conv layer in Mamba block. (default: 4)
  --expand EXPAND       Expansion factor in Mamba block. (default: 2)
  --dt_rank DT_RANK     Rank of the delta projection layer. (default: auto)
  --dt_min DT_MIN       Minimum value of delta. (default: 0.001)
  --dt_max DT_MAX       Maximum value of delta. (default: 0.1)
  --dt_init DT_INIT     Initialisation method of delta projection (default:
                        random)
  --dt_scale DT_SCALE   Scale of initialisation of delta projection (default:
                        1.0)
  --dt_init_floor DT_INIT_FLOOR
                        TODO (default: 0.0001)
  --no_conv_bias        Do not use bias in Conv layer in Mamba block.
                        (default: True)
  --bias                Use bias in linear layers. (default: False)
  --kernel_mode KERNEL_MODE
                        Selects which Mamba Kernel to use. (default:
                        xla_associative)
  --pad_vocab_mult PAD_VOCAB_MULT
                        Pad vocab multiplier. (default: 8)
  --norm_eps NORM_EPS   RMSNorm epsilon (default: 1e-05)
  --res_in_bf16         Use bfloat16 for residual connections. Otherwise use
                        float32. (default: False)

Mamba Components

The components of the full Mamba architecture can be imported as follows:

Roadmap


Acknowledgements

This implementation was based off a mix of:

A lot of understanding of how S4 models work was derived from:

And a lot of understanding on the associative scan recurrent form was derived from:

References

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu, Tri Dao

@misc{gu2023mamba,
      title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
      author={Albert Gu and Tri Dao},
      year={2023},
      eprint={2312.00752},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}