Home

Awesome

<div align="center"> <p align="center"> <!-- prettier-ignore -->

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="55px">   <img src="https://user-images.githubusercontent.com/25985824/106288518-24bb7680-6216-11eb-8f10-60052c519586.png" height="50px">

<div align="center"> <p align="center">

Examples

</p> </div>

This repository contains examples of using FiftyOne to accomplish various common tasks.


<!-- prettier-ignore -->

<a href="https://voxel51.com/fiftyone">Website</a><a href="https://voxel51.com/docs/fiftyone">Docs</a><a href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb">Try it Now</a><a href="https://voxel51.com/docs/fiftyone/tutorials/index.html">Tutorials</a><a href="https://voxel51.com/blog/">Blog</a><a href="https://slack.voxel51.com">Community</a>

PyPI python PyPI version Downloads Docker Pulls Build License Discord Slack Medium Mailing list Twitter

</p> </div>

👋 hey there!

We created an open-source tool that supercharges your computer vision and machine learning workflows by enabling you to visualize datasets, analyze models, and improve data quality more efficiently than ever before. Embark with us in this adventure 🤝. FiftyOne.

------------------------------------------------------------------

<div id='-prerequisites'/> <details> <summary>Prerequisites for beginners</summary>

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> prerequisites for beginners 🧸

Fiftyone requires Python (3.9 - 3.11), Git and other dependencies. To get started, select the guide for your operating system or environment, if you are an experienced developer you can avoid this section. If you are looking for scaling solution to be installed in Cloud Enterprise Systems, please take a look of Fiftyone Teams here

<details> <summary>Windows</summary> <div id='-prerequisites_windows'/>

1. Install Python and Git

1.1 Install Python

Note: ⚠️ The version of Python that is available in the Microsoft Store is not recommended.

Download a Python installer from python.org. Choose Python 3.9, 3.10, or 3.11 and make sure to pick a 64-bit version. For example, this Python 3.10.11 installer. Double-click on the installer to run it, and follow the steps in the installer.

1.2 Install Git

Download Git from this link. Double-click on the installer to run it, and follow the steps in the installer.

2. Install Microsoft Visual C++ Redistributable and FFMPEG (Optional)

Download Microsoft Visual C++ Redistributable. Double-click on the installer to run it, and follow the steps in the installer.

Install FFMPEG

Download FFMPEG binary from here. Set FFMPEG's path (e.g., C:\ffmpeg\bin) to the PATH environmental variable on Windows.

3. Create a Virtual Environment

</details> <details> <summary>Linux</summary> <div id='-prerequisites_linux'/>

1. Install Python and Git

You may need to install some additional libraries on Ubuntu Linux. These steps work on a clean install of Ubuntu Desktop 20.04, and should also work on Ubuntu 22.04 and 20.10, and on Ubuntu Server.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install python3-venv build-essential python3-dev git-all libgl1-mesa-dev ffmpeg
# Ubuntu
sudo apt install libcurl4 openssl

# Fedora
sudo dnf install libcurl openssl

2. Create and activate the Virtual Environment

python3 -m venv fiftyone_env
source fiftyone_env/bin/activate

Now you are ready to install Fiftyone and all the requirements/packages/dependencies. Go to Installation section in this Readme file.

</details> <details> <summary>MacOS</summary> <div id='-prerequisites_macos'/>

1. Install Xcode Command Line Tools

xcode-select --install

2. Install Homebrew

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

After you install it, follow the instructions from the Homebrew installation to set it up.

3. Install Python and dependencies

brew install python@3.9
brew install protobuf

#optional but recommendeded
brew install ffmpeg

4. Create and activate the Virtual Environment

python3 -m venv fiftyone_env
source fiftyone_env/bin/activate

Now you are ready to install Fiftyone and all the requirements/packages/dependencies. Go to Installation section in this Readme file.

</details> <details> <summary>Docker</summary> <div id='-prerequisites_docker'/>

Refer to these instructions to see how to build and run Docker images containing source or release builds of FiftyOne.

</details> <div align="center"> <p align="center">
WindowsLinuxmacOSDocker
</p> </div>

Important Notes: Remember, you will need...

</details>

------------------------------------------------------------------

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> Usage 🔥

Each example in this repository is provided as a Jupyter Notebook. The table of contents below provides handy links for each example:

<img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22">  Click this link to run the notebook in Google Colab (no setup required!)

<img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22">  Click this link to view the notebook in Jupyter nbviewer

<img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22">  Click this link to download the notebook

Running examples locally

You can always clone this repository:

git clone https://github.com/voxel51/fiftyone-examples

and run any example locally. Make sure you have Jupyter installed and then run:

jupyter notebook examples/an_awesome_example.ipynb

------------------------------------------------------------------

List of Examples

<!-- Autogenerated by `scripts/make_examples.py` --> <table> <tr> <th align="center">Shortcuts</th> <th align="center">Examples</th> <th align="center">Description</th> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/quickstart.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/quickstart.ipynb">quickstart</a></td> <td>A quickstart example for getting your feet wet with FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/walkthrough.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/walkthrough.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/walkthrough.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/walkthrough.ipynb">walkthrough</a></td> <td>A more in-depth alternative to the quickstart that covers the basics of FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/zilliz_advent_of_code.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/zilliz_advent_of_code.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/zilliz_advent_of_code.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/zilliz_advent_of_code.ipynb">zilliz_advent_of_code</a></td> <td>Welcome to FiftyOne: Zilliz Advent of Open Source Code 2023</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/ai_telephone.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/ai_telephone.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/ai_telephone.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/ai_telephone.ipynb">ai_telephone</a></td> <td>Play multimodal AI telephone with text-to-image models, image-to-text models, and Fiftyone</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/clean_conceptual_captions.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/clean_conceptual_captions.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/clean_conceptual_captions.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/clean_conceptual_captions.ipynb">clean_conceptual_captions</a></td> <td>Clean Google's Conceptual Captions Dataset with Fiftyone to train your own ControlNet</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/segment_anything_openvino.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/segment_anything_openvino.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/segment_anything_openvino.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/segment_anything_openvino.ipynb">segment_anything_openvino</a></td> <td>Add object masks to a FiftyOne dataset with OpenVINO-optimized Segment Anything Model</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/comparing_YOLO_and_EfficientDet.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/comparing_YOLO_and_EfficientDet.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/comparing_YOLO_and_EfficientDet.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/comparing_YOLO_and_EfficientDet.ipynb">comparing_YOLO_and_EfficientDet</a></td> <td>Compares the YOLOv4 and EfficientDet object detection models on the COCO dataset</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/digging_into_coco.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/digging_into_coco.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/digging_into_coco.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/digging_into_coco.ipynb">digging_into_coco</a></td> <td>A simple example of how to find mistakes in your detection datasets</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/deepfakes_in_politics.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/deepfakes_in_politics.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/deepfakes_in_politics.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/deepfakes_in_politics.ipynb">deepfakes_in_politics</a></td> <td>Evaluating deepfakes using a deepfake detection algorithm and visualizing the results in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/emotion_recognition_presidential_debate.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/emotion_recognition_presidential_debate.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/emotion_recognition_presidential_debate.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/emotion_recognition_presidential_debate.ipynb">emotion_recognition_presidential_debate</a></td> <td>Analyzing the 2020 US Presidential Debates using an emotion recognition model</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/image_uniqueness.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/image_uniqueness.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/image_uniqueness.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/image_uniqueness.ipynb">image_uniqueness</a></td> <td>Using FiftyOne's image uniqueness method to analyze and extract insights from unlabeled datasets</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/structured_noise_injection.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/structured_noise_injection.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/structured_noise_injection.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/structured_noise_injection.ipynb">structured_noise_injection</a></td> <td>Visually exploring a method for structured noise injection in GANs from CVPR 2020</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/visym_pip_175k.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/visym_pip_175k.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/visym_pip_175k.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/visym_pip_175k.ipynb">visym_pip_175k</a></td> <td>Exploring the People in Public 175K Dataset from Visym Labs with FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/wrangling_datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/wrangling_datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/wrangling_datasets.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/wrangling_datasets.ipynb">wrangling_datasets</a></td> <td>Using FiftyOne to load, manipulate, and export datasets in common formats</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/open_images_evaluation/open_images_evaluation.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/open_images_evaluation/open_images_evaluation.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/open_images_evaluation/open_images_evaluation.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/open_images_evaluation/open_images_evaluation.ipynb">open_images_evaluation</a></td> <td>Evaluating the quality of the ground truth annotations of the Open Images Dataset with FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/working_with_feature_points.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/working_with_feature_points.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/working_with_feature_points.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/working_with_feature_points.ipynb">working_with_feature_points</a></td> <td>A simple example of computing feature points for images and visualizing them in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/image_deduplication.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/image_deduplication.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/image_deduplication.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/image_deduplication.ipynb">image_deduplication</a></td> <td>Find and remove duplicate images in your image datasets with FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/exploring_classification_hardness.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/exploring_classification_hardness.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/exploring_classification_hardness.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/exploring_classification_hardness.ipynb">hardness_for_image_classification</a></td> <td>Use the FiftyOne Brain to mine the hardest images in your classification dataset</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/pytorch_detection_training.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/pytorch_detection_training.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/pytorch_detection_training.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/pytorch_detection_training.ipynb">pytorch_detection_training</a></td> <td>Using FiftyOne datasets to train a PyTorch object detection model</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/pytorchvideo_tutorial.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/pytorchvideo_tutorial.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/pytorchvideo_tutorial.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/pytorchvideo_tutorial.ipynb">pytorchvideo_model_evaluation</a></td> <td>Evaluate and visualize PyTorchVideo models with FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/training_clearml_detector.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/training_clearml_detector.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/training_clearml_detector.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/training_clearml_detector.ipynb">training_clearml_detector</a></td> <td>Train a model with ClearML and FiftyOne to detect DRAGONS!</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/convert_tags_to_classifications.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/convert_tags_to_classifications.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/convert_tags_to_classifications.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/convert_tags_to_classifications.ipynb">converting_tags_to_classifications</a></td> <td>Convert classifications to tags and back to annotate them right in the FiftyOne App</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/Qdrant_FiftyOne_Recipe.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/Qdrant_FiftyOne_Recipe.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/Qdrant_FiftyOne_Recipe.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/Qdrant_FiftyOne_Recipe.ipynb">Qdrant_FiftyOne_Recipe</a></td> <td>Nearest neighbor classification of embeddings with Qdrant</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/armbench_defect_detection.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/armbench_defect_detection.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/armbench_defect_detection.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/armbench_defect_detection.ipynb">armbench_defect_detection</a></td> <td>Visualizing Defects in Amazon’s ARMBench Dataset Using Embeddings and OpenAI’s CLIP Model</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/openvino_detection_with_fiftyone.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/openvino_detection_with_fiftyone.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/openvino_detection_with_fiftyone.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/openvino_detection_with_fiftyone.ipynb">openvino_model_horizontal_text_detection</a></td> <td>Horizontal text detection on Total-Text Dataset using OpenVino Model</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/chest_xray14.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/chest_xray14.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/chest_xray14.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/chest_xray14.ipynb">chest_xray14</a></td> <td>Load and explore the NIH's ChestX-ray14 dataset in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/football_player_segmentation.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/football_player_segmentation.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/football_player_segmentation.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/football_player_segmentation.ipynb">football_player_segmentation</a></td> <td>Detection and Segmentation on Football Player Segmentation Dataset using SAM</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/wildme_conservation_datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/wildme_conservation_datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/wildme_conservation_datasets.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/wildme_conservation_datasets.ipynb">wildme_conservation_datasets</a></td> <td>Create a 'meta' dataset out of three WildMe conservation datasets in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/Tips_and_Tricks_CLI.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/Tips_and_Tricks_CLI.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/Tips_and_Tricks_CLI.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/Tips_and_Tricks_CLI.ipynb">CLI Tips & Tricks</a></td> <td>Use FiftyOne's Command Line Interface to expedite your workflows</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/Grouped Datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/Grouped Datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/Grouped Datasets.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/Grouped Datasets.ipynb">Grouped Dataset Tips & Tricks</a></td> <td>Learn how to work with grouped datasets in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/Keypoints.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/Keypoints.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/Keypoints.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/Keypoints.ipynb">Keypoint Tips & Tricks</a></td> <td>Learn how to work with keypoint skeletons in FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/3D Detections.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/3D Detections.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/3D Detections.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/3D Detections.ipynb">3D Detections Tips & Tricks</a></td> <td>Make your first 3D detection in point clouds using FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/heatmaps.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/heatmaps.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/heatmaps.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/heatmaps.ipynb">Heatmaps Tips & Tricks</a></td> <td>Learn how to use heatmaps with a body pose estimation example</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/Video Labels.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/examples/Video Labels.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/examples/Video Labels.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="examples/Video Labels.ipynb">Video Labels Tips & Tricks</a></td> <td>Learn different label types in video datasets with ASL videos</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/Tracking_Datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/Tracking_Datasets.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/Tracking_Datasets.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="Tracking_Datasets.ipynb">Tracking Datasets with FiftyOne</a></td> <td>Learn how to load and work with tracking datasets with the help of FiftyOne</td> </tr> <tr> <td> <a target="_blank" href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/GradCam + More Tutorial.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791629-6e618700-5769-11eb-857f-d176b37d2496.png" height="22" width="22"> </a> <a target="_blank" href="https://nbviewer.jupyter.org/github/voxel51/fiftyone-examples/blob/master/GradCam + More Tutorial.ipynb"> <img src="https://user-images.githubusercontent.com/25985824/104791634-6efa1d80-5769-11eb-8a4c-71d6cb53ccf0.png" height="22" width="22"> </a> <a id="raw-url" href="https://raw.githubusercontent.com/voxel51/fiftyone-examples/master/GradCam + More Tutorial.ipynb" download> <img src="https://user-images.githubusercontent.com/25985824/104792428-60f9cc00-576c-11eb-95a4-5709d803023a.png" height="22" width="22"> </a> </td> <td><a href="GradCam + More Tutorial.ipynb">GradCam and More with FiftyOne</a></td> <td>Apply Model Explainability techniques to your workflows with FiftyOne and GradCam!</td> </tr> </table>

------------------------------------------------------------------

<div id='-contributing'/>

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> contributing to FiftyOne Examples 🧡

This repository is open source and community contributions are welcome!

Check out the contribution guide to learn how to get involved.

<div align="center"> <p align="center">

🤝 Join Our Community 🤝

Connect with us through your preferred channels:

Discord Slack Medium Twitter LinkedIn Facebook

Share your workflow improvements on social media and tag us @Voxel51 and #FiftyOne!.

🎊 You will be on our rewarded list. 🎊

</p> </div>

------------------------------------------------------------------

<div id='-contributors'/>

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> contributors 🤓

Special thanks to these amazing people for contributing to FiftyOne Examples! 🙌

<a href="https://github.com/voxel51/fiftyone/graphs/contributors"> <img src="https://contrib.rocks/image?repo=voxel51/fiftyone-examples" /> </a>

------------------------------------------------------------------

<div id='-citation'/>

<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> citation 📖

If you use a specific contributed example in this repository, feel free to cite the project (but only if you love it 😊):

@article{moore2020fiftyone,
  title={FiftyOne},
  author={Moore, B. E. and Corso, J. J.},
  journal={GitHub. Note: https://github.com/voxel51/fiftyone},
  year={2020}
}