Home

Awesome

FCOS with VoVNet(CVPRW'19) Efficient Backbone Networks

This repository contains FCOS(ICCV'19) with VoVNet (CVPRW'19) efficient backbone networks. This code based on pytorch imeplementation of FCOS

Highlights

Comparison with ResNet backbones

BackboneMulti-scale trainingInference time (ms)Box AP (AP/APs/APm/APl)DOWNLOAD
R-50-FPN-1xNo8437.5/21.3/40.3/49.5-
V-39-FPN-1xNo8237.7/22.4/41.8/48.4link
R-101-FPN-2xYes10441.3/25.0/45.5/53.0-
V-57-FPN-2xYes9141.6/25.9/45.6/53.1link
R-101-32x8d-FPN-2xYes17142.5/26.0/46.1/54.2-
V-93-FPN-2xYes11342.1/26.2/46.0/53.9link

ImageNet pretrained weight

Installation

Check INSTALL.md for installation instructions which is orginate from FCOS

Training

Follow the instructions

For example,

# specify the number of GPU you can use.
export NGPUS=8 
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/vovnet/fcos_V_39_FPN_1x.yaml" 

Evaluation

Follow the instructions

First of all, you have to download the weight file you want to inference.

For examaple,

multi-gpu evaluation & test batch size 16,
wget https://dl.dropbox.com/s/8n0wyypfggliplw/FCOS-V-39-FPN-1x.pth?dl=1
export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/test_net.py --config-file "configs/vovnet/fcos_V_39_FPN_1x.yaml" TEST.IMS_PER_BATCH 16 MODEL.WEIGHT FCOS-V-39-FPN-1x.pth
single-gpu evaluation & test batch size 1,
wget https://dl.dropbox.com/s/8n0wyypfggliplw/FCOS-V-39-FPN-1x.pth?dl=1
CUDA_VISIBLE_DEVICES=0
python tools/test_net.py --config-file "configs/vovnet/e2e_faster_rcnn_V_39_FPN_2x.yaml" TEST.IMS_PER_BATCH 1 MODEL.WEIGHT FCOS-V-39-FPN-1x.pth

Related projects