Home

Awesome

<img src="http://i.imgur.com/2UyfKHs.png?1" width="80" align="left">

CORe50

License: CC BY 4.0 built with Python2.7 built with Caffe built with Sacred

A new Dataset and Benchmark for Continual Learning and Object Recognition, Detection and Segmentation


In this page we provide the code and all the materials related to the CORe50 benchmark. If you plan to use this dataset or other resources you'll find in this page, please cite our latest papers "CORe50: a New Dataset and Benchmark for Continuous Object Recognition" and "Fine-Grained Continual Learning":

@InProceedings{lomonaco2017core50,
   title = {CORe50: a New Dataset and Benchmark for Continuous Object Recognition},
   author = {Vincenzo Lomonaco and Davide Maltoni},
   booktitle = {Proceedings of the 1st Annual Conference on Robot Learning},
   pages = {17--26},
   year = {2017},
   volume = {78}
}

@article{lomonaco2019nicv2,
   title = {Fine-Grained Continual Learning},
   author = {Vincenzo Lomonaco and Davide Maltoni and Lorenzo Pellegrini},
   journal = {Arxiv preprint arXiv:1907.03799},
   year = {2019}
}

You can find more information about the dataset/benchmark as well as additional data to download at: vlomonaco.github.io/core50.


Dependencies

In order to extecute the code in the repository you'll need to install the following dependencies in a Python 3.x environment:

pip install numpy
pip install sacred

Follow the step-by-step guide for installing caffe here.


Project Structure

Up to now the projects is structured as follows:


Getting Started

First of all, let's clone the repository:

git clone https://github.com/vlomonaco/core50.git

Then, in order to run the experiments and reproduce the benchmark we need to download the pre-trained models and the CORe50 dataset. This can be automatically done using the script provided:

cd core50
./scripts/bash/fetch_data_and_setup.sh

All the data will be downloaded in the data/ directory. After this initial step you can directly run the experiments with the bash scripts run_sI_exps.sh, run_sII_exps.sh and run_sIII_exps.sh for the NI, NC and NIC scenarios respectively.

For example, reproducing the first scenario experiments can be as easy as running:

./run_sI_exps.sh

Since this experiments can take a while (also more than 24h depending on the scenario) you can also disable some experiments just by commenting them in the bash script.


Troubleshooting


License

This work is licensed under a <a href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.


Author