Home

Awesome

Image-to-Voxel Model Translation for 3D Scene Reconstruction and Segmentation

NOTE: We are preparing the final code for release on GitHub. It will be published by September 20.

Code for the paper: Image-to-Voxel Model Translation for 3D Scene Reconstruction and Segmentation This is the PyTorch implementation of the color-to-voxel model translation presented on ECCV 2018.

The code is based on the PyTorch implementation of the pix2pix and CycleGAN.

StructureFromGAN: [Project] [Paper]

<img src="images/200823_SSZ_title.jpg" width="900"/>

If you use this code for your research, please cite:

@InProceedings{Kniaz2020,
author="Kniaz, Vladimir A. and
Knyaz, Vladimir V. and Fabio Remondino and
Artem Bordodymov and Petr Moshkantsev
title={SSZ: Image-to-Voxel Model Translation for 3D Scene Reconstruction and Segmentation},
booktitle={{Computer Vision -- ECCV 2020 Workshops",
year="2020}},
publisher={Springer International Publishing},
}

Prerequisites

Getting Started

Installation

git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
git clone https://github.com/vlkniaz/SSZ

StructureFromGAN train/test

cd SSZ
bash ./datasets/download_ssz_dataset.sh mini
bash scripts/train_ssz.sh
bash scripts/test_ssz.sh

The test results will be saved to a html file here: ./results/ssz/test_latest/index.html.

Apply a pre-trained model (SSZ)

Download a pre-trained model with ./pretrained_models/download_ssz_model.sh.

bash pretrained_models/download_ssz_model.sh SSZ
bash ./datasets/download_ssz_dataset.sh mini
bash scripts/test_ssz_pretrained.sh