Home

Awesome

MatConvNet implementation of the FCN models for semantic segmentation

This package contains an implementation of the FCN models (training and evaluation) using the MatConvNet library.

For training, look at the fcnTrain.m script, and for evaluation at fcnTest.m. The script fcnTestModelZoo.m is designed to test third party networks imported in MatConvNet (mainly from Caffe).

While we are still tuning parameters, on the PASCAL VOC 2011 validation data subset used in the FCN paper, this code has been used to train networks with this performance:

ModelTest dataMean IOUMean pix. accuracyPixel accuracy
FCN-32s (ours)RV-VOC1160.8089.6175.49
FCN-16s (ours)RV-VOC1162.2590.0877.81
FCN-8s (ours)RV-VOC11in prog.in prog.in prog.
FNC-32s (orig.)RV-VOC1159.4389.1273.28
FNC-16s (orig.)RV-VOC1162.3590.0275.74
FNC-8s (orig.)RV-VOC1162.6990.3375.86

The original FCN models can be downloaded from the MatConvNet model repository.

About

This code was developed by

References

'Fully Convolutional Models for Semantic Segmentation', Jonathan Long, Evan Shelhamer and Trevor Darrell, CVPR, 2015 (paper).

Changes