Awesome
<p align="center"> <img src="./public/logo_dark.png" height="200" alt="icon" /> </p> <h1 align="center">VT.ai</h1> <p align="center"> <em>Minimal multimodal AI chat app with dynamic conversation routing</em> </p> <p align="center"> <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License: MIT"></a> <a href="https://github.com/vinhnx"><img src="https://img.shields.io/github/stars/vinhnx?style=social" alt="GitHub Stars"></a> <a href="https://news.ycombinator.com/user?id=vinhnx"><img src="https://img.shields.io/hackernews/user-karma/vinhnx?style=social" alt="HackerNews Karma"></a> <a href="https://twitter.com/vinhnx"><img src="https://img.shields.io/twitter/follow/vinhnx?style=social" alt="Twitter Follow"></a> <a href="https://twitter.com/vtdotai"><img src="https://img.shields.io/twitter/follow/vtdotai?style=social" alt="VT.ai Twitter"></a> </p>Overview
VT.ai is a VT.ai - Minimal multimodal AI chat app that provides a seamless chat interface for interacting with various Large Language Models (LLMs). It supports both cloud-based providers and local model execution through Ollama.
Key Features 🚀
-
Multi-modal Interactions
- Text and image processing capabilities
- Real-time streaming responses
- [Beta] Advanced Assistant features via OpenAI's Assistant API
-
Flexible Model Support
- OpenAI, Anthropic, and Google integration
- Local model execution via Ollama
- Dynamic parameter adjustment (temperature, top-p)
-
Modern Architecture
- Built on Chainlit for responsive UI
- SemanticRouter for intelligent conversation routing
- Real-time response streaming
- Customizable model settings
Screenshots
Quick Start Guide
Prerequisites
- Python 3.7+
- (Recommended)
rye
for dependency management - For local models:
- Ollama client
- Desired Ollama models
Installation
- Clone the repository
- Copy
.env.example
to.env
and configure your API keys - Set up Python environment:
python3 -m venv .venv source .venv/bin/activate pip3 install -r requirements.txt
- Optional: Train semantic router
python3 src/router/trainer.py
- Launch the application:
chainlit run src/app.py -w
Using Local Models with Ollama
# Download model
ollama pull llama3
# Start Ollama server
ollama serve
Technical Stack
- Chainlit: Frontend framework
- LiteLLM: LLM integration layer
- SemanticRouter: Conversation routing
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature
- Commit changes:
git commit -m 'Add amazing feature'
- Push to branch:
git push origin feature/amazing-feature
- Open a Pull Request
Release Information
Check our releases page for version history and updates.
License
This project is licensed under the MIT License. See LICENSE for details.