Home

Awesome

Summarizing Stream Data for Memory-Restricted Online Continual Learning

Official implementation of "Summarizing Stream Data for Memory-Restricted Online Continual Learning"

<p align="center"><img src="./figs/pipeline-ssd.png" align="center" width="750"></p>

Highlights :sparkles:

Datasets

Online Class Incremental

Data preparation

Run commands

Detailed descriptions of options can be found in the SSD section in general_main.py

Sample commands to run algorithms on Split-CIFAR100

python general_main.py --data cifar100 --cl_type nc --agent SSCR --retrieve random --update summarize --mem_size 1000 --images_per_class 10 --head mlp --temp 0.07 --eps_mem_batch 100 --lr_img 4e-3 --summarize_interval 6 --queue_size 64 --mem_weight 1 --num_runs 10

Acknowledgement

This project is mainly based on online-continual-learning

Citation

If you find this work helpful, please cite:

@article{gu2023summarizing,
  title={Summarizing Stream Data for Memory-Restricted Online Continual Learning},
  author={Gu, Jianyang and Wang, Kai and Jiang, Wei and You, Yang},
  journal={arXiv preprint arXiv:2305.16645},
  year={2023}
}