Home

Awesome

FixMatch

The unofficial reimplementation of fixmatch with RandomAugment.

Overview

repousing EMA model to evaluateusing EMA model to trainupdate parametersupdate buffer
ours--
mdiephuis-
kekmodel--

2020-03-30_18:07:08.log : annotation decay and add classifier.bias

2020-03-31_09:51:38.log : add interleave and run model once

Dependencies

The other packages and versions are listed in requirements.txt. You can install them by pip install -r requirements.txt.

Dataset

download cifar-10 dataset:

    $ mkdir -p dataset && cd data
    $ wget -c http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
    $ tar -xzvf cifar-10-python.tar.gz

download cifar-100 dataset:

    $ mkdir -p dataset && cd data
    $ wget -c http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
    $ tar -xzvf cifar-100-python.tar.gz

Train the model

To train the model on CIFAR10 with 40 labeled samples, you can run the script:

    $ CUDA_VISIBLE_DEVICES='0' python train.py --dataset CIFAR10 --n-labeled 40 

To train the model on CIFAR100 with 400 labeled samples, you can run the script:

    $ CUDA_VISIBLE_DEVICES='0' python train.py --dataset CIFAR100 --n-labeled 400 

Results

CIFAR10

#Labels402504000
Paper (RA)86.19 ± 3.3794.93 ± 0.6595.74 ± 0.05
ours89.63(85.65)93.083294.7154

CIFAR100

#Labels400250010000
Paper (RA)51.15 ± 1.7571.71 ± 0.1177.40 ± 0.12
ours53.7467.316973.26

References