Awesome
ASSUDA
Code and data of Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation (ICCV 2021; Oral)
Datasets
- GTA5 -> Cityscapes (VGG) and GTA5 -> Cityscapes (DeepLab)
- SYNTHIA -> Cityscapes (VGG) and SYNTHIA -> Cityscapes (DeepLab)
- Cityscapes
- Perturbed test images: PSPNet_Attack
Initial models
Training
An example (SYNTHIA->Cityscapes with DeepLab):
python main.py \
--data-dir /path/to/synthia_deeplab \
--data-list ./dataset/synthia_list/train.txt \
--data-dir-target /path/to/cityscapes \
--data-list-target ./dataset/cityscapes_list/train.txt \
--data-label-folder-target /path/to/synthia_deeplab/cityscapes_ssl \
--snapshot-dir ./snapshots/synthia2city_deeplab \
--init-weights ./initial_model/DeepLab_init.pth \
--num-steps-stop 80000 \
--model DeepLab \
--source synthia \
--learning-rate 1e-4 \
--learning-rate-D 1e-6 \
--lambda-adv-target 1e-4 \
--save-pred-every 5000 \
--alpha 1.0 \
--lambda-contrastive 0.01
Evaluation
An example (SYNTHIA->Cityscapes with DeepLab):
python evaluation.py \
--data-dir-target /path/to/pspnet_attack/pspnet_fgsm_0.1 \
--data-list-target ./dataset/cityscapes_list/val.txt \
--gt_dir /path/to/cityscapes/gtFine/val \
--devkit_dir ./dataset/cityscapes_list \
--restore-from ./snapshots/synthia2city_deeplab/synthia_80000 \
--save results/cityscapes_eval \
--model DeepLab \
--source synthia
Citation
@article{yang2021exploring,
title={Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation},
author={Yang, Jinyu and Li, Chunyuan and An, Weizhi and Ma, Hehuan and Guo, Yuzhi and Rong, Yu and Zhao, Peilin and Huang, Junzhou},
journal={Proceedings of the IEEE international conference on computer vision (ICCV)},
year={2021}
}
Acknowledgment
The code is heavily borrowed from BDL