Home

Awesome

šŸ”“šŸ“± Android-PIN-Bruteforce

Unlock an Android phone (or device) by bruteforcing the lockscreen PIN.

Turn your Kali Nethunter phone into a bruteforce PIN cracker for Android devices!

šŸ“± How it works

It uses a USB OTG cable to connect the locked phone to the Nethunter device. It emulates a keyboard, automatically tries PINs, and waits after trying too many wrong guesses.

How to Connect Phones

[Nethunter phone] <--> [USB cable] <--> [USB OTG adaptor] <--> [Locked Android phone]

The USB HID Gadget driver provides emulation of USB Human Interface Devices (HID). This enables an Android Nethunter device to emulate keyboard input to the locked phone. It's just like plugging a keyboard into the locked phone and pressing keys.

ā± This takes just over 16.6 hours with a Samsung S5 to try all possible 4 digit PINs, but with the optimised PIN list it should take you much less time.

You will need

šŸŒŸ Benefits

ā­ Features

Installation

TBC

Executing the script

If you installed the script to /sdcard/, you can execute it with the following command.

bash ./android-pin-bruteforce

Note that Android mounts /sdcard with the noexec flag. You can verify this with mount.

Usage


Android-PIN-Bruteforce (0.2) is used to unlock an Android phone (or device) by bruteforcing the lockscreen PIN.
  Find more information at: https://github.com/urbanadventurer/Android-PIN-Bruteforce

Commands:
  crack                Begin cracking PINs
  resume               Resume from a chosen PIN
  rewind               Crack PINs in reverse from a chosen PIN
  diag                 Display diagnostic information
  version              Display version information and exit

Options:
  -f, --from PIN       Resume from this PIN
  -a, --attempts       Starting from NUM incorrect attempts
  -m, --mask REGEX     Use a mask for known digits in the PIN
  -t, --type TYPE      Select PIN or PATTERN cracking
  -l, --length NUM     Crack PINs of NUM length
  -c, --config FILE    Specify configuration file to load
  -p, --pinlist FILE   Specify a custom PIN list
  -d, --dry-run        Dry run for testing. Doesn't send any keys.
  -v, --verbose        Output verbose logs

Usage:
  android-pin-bruteforce <command> [options]

Supported Android Phones/Devices

This has been successfully tested with various phones including the Samsung S5, S7, Motorola G4 Plus and G5 Plus.

It can unlock Android versions 6.0.1 through to 10.0. The ability to perform a bruteforce attack doesn't depend on the Android version in use. It depends on how the device vendor developed their own lockscreen.

Check the Phone Database for more details https://github.com/urbanadventurer/Android-PIN-Bruteforce/wiki/Phone-Database

šŸŽ³ PIN Lists

Optimised PIN lists are used by default unless the user selects a custom PIN list.

Cracking PINs of different lengths

Use the --length commandline option.

Use this command to crack a 3 digit PIN, ./android-pin-bruteforce crack --length 3

Use this command to crack a 6 digit PIN ./android-pin-bruteforce crack --length 6

Where did the optimised PIN lists come from?

The optimised PIN lists were generated by extracting numeric passwords from database leaks then sorting by frequency. All PINs that did not appear in the password leaks were appended to the list.

The optimised PIN lists were generated from Ga$$Pacc DB Leak (21GB decompressed, 688M Accounts, 243 Databases, 138920 numeric passwords).

The 4 digit PIN list

The reason that the 4 digit PIN list is used from a different source is because it gives better results than the generated list from Ga$$Pacc DB Leak.

optimised-pin-length-4.txt is an optimised list of all possible 4 digit PINs, sorted by order of likelihood. It can be found with the filename pinlist.txt at https://github.com/mandatoryprogrammer/droidbrute

This list is used with permission from Justin Engler & Paul Vines from Senior Security Engineer, iSEC Partners, and was used in their Defcon talk, Electromechanical PIN Cracking with Robotic Reconfigurable Button Basher (and C3BO)

Cracking with Masks

Masks use regular expressions with the standard grep extended format.

./android-pin-bruteforce crack --mask "...[45]" --dry-run

šŸ“± Configuration for different phones

Device manufacturers create their own lock screens that are different to the default or stock Android. To find out what keys your phone needs, plug a keyboard into the phone and try out different combinations.

Load a different configuration file, with the --config FILE commandline parameter.

Example: ./android-pin-bruteforce --config ./config.samsung.s5 crack

You can also edit the config file by customising the timing and keys sent.

The following configuration variables can be used to support a different phone's lockscreen.

# Timing
## DELAY_BETWEEN_KEYS is the period of time in seconds to wait after each key is sent
DELAY_BETWEEN_KEYS=0.25

## The PROGRESSIVE_COOLDOWN_ARRAY variables act as multi-dimensional array to customise the progressive cooldown
## PROGRESSIVE_ARRAY_ATTEMPT_COUNT__________ is the attempt number
## PROGRESSIVE_ARRAY_ATTEMPTS_UNTIL_COOLDOWN is how many attempts to try before cooling down
## PROGRESSIVE_ARRAY_COOLDOWN_IN_SECONDS____ is the cooldown in seconds

PROGRESSIVE_ARRAY_ATTEMPT_COUNT__________=(1  11 41)
PROGRESSIVE_ARRAY_ATTEMPTS_UNTIL_COOLDOWN=(5   1  1)
PROGRESSIVE_ARRAY_COOLDOWN_IN_SECONDS____=(30 30 60)

## SEND_KEYS_DISMISS_POPUPS_N_SECONDS_BEFORE_COOLDOWN_END defines how many seconds before the end of the cooldown period, keys will be sent
# set to 0 to disable
SEND_KEYS_DISMISS_POPUPS_N_SECONDS_BEFORE_COOLDOWN_END=5
## SEND_KEYS_DISMISS_POPUPS_AT_COOLDOWN_END configures the keys that are sent to dismiss messages and popups before the end of the cooldown period
SEND_KEYS_DISMISS_POPUPS_AT_COOLDOWN_END="enter enter enter"

## KEYS_BEFORE_EACH_PIN configures the keys that are sent to prompt the lock screen to appear. This is sent before each PIN.
## By default it sends "escape enter", but some phones will respond to other keys.

# Examples:
# KEYS_BEFORE_EACH_PIN="ctrl_escape enter"
# KEYS_BEFORE_EACH_PIN="escape space"
KEYS_BEFORE_EACH_PIN="escape enter"

## KEYS_STAY_AWAKE_DURING_COOLDOWN the keys that are sent during the cooldown period to keep the phone awake
KEYS_STAY_AWAKE_DURING_COOLDOWN="enter"

## SEND_KEYS_STAY_AWAKE_DURING_COOLDOWN_EVERY_N_SECONDS how often the keys are sent, in seconds
SEND_KEYS_STAY_AWAKE_DURING_COOLDOWN_EVERY_N_SECONDS=5

## DELAY_BEFORE_STARTING is the period of time in seconds to wait before the bruteforce begins
DELAY_BEFORE_STARTING=2
## KEYS_BEFORE_STARTING configures the keys that are sent before the bruteforce begins
KEYS_BEFORE_STARTING="enter"

Popups

We send keys before the end of the cooldown period, or optionally during the cooldown period. This is to keep the lockscreen app active and to dismiss any popups about the number of incorrect PIN attempts or a low battery warning.

Test sending keys from the NetHunter phone

Test sending keys from the terminal

Use ssh from your laptop to the NetHunter phone, and use this command to test sending keys:

In this example, the enter key is sent.

echo "enter" | /system/xbin/hid-keyboard /dev/hidg0 keyboard

In this example, ctrl-escape is sent.

echo "left-ctrl escape" | /system/xbin/hid-keyboard /dev/hidg0 keyboard

Note: Sending combinations of keys in config file variables is different. Currently only ctrl_escape is supported.

In this example, keys a, b, c are sent.

echo a b c | /system/xbin/hid-keyboard /dev/hidg0 keyboard

Test sending keys from an app

This Android app is a virtual USB Keyboard that you can use to test sending keys.

https://store.nethunter.com/en/packages/remote.hid.keyboard.client/

How to send special keys

Use this list for the following variables:

To send special keys use the following labels. This list can be found in the hid_gadget_test source code.

Key labelKey label
left-ctrlf6
right-ctrlf7
left-shiftf8
right-shiftf9
left-altf10
right-altf11
left-metaf12
right-metainsert
returnhome
escpageup
bckspcdel
tabend
spacebarpagedown
caps-lockright
f1left
f2down
f3kp-enter
f4up
f5num-lock

To send more than one key at the same time, use the following list:

If you need more key combinations please open a new issue in the GitHub issues list.

Customising the Progressive Cooldown

The following section of the config file controls the progressive cooldown.

## The PROGRESSIVE_COOLDOWN_ARRAY variables act as multi-dimensional array to customise the progressive cooldown
## PROGRESSIVE_ARRAY_ATTEMPT_COUNT__________ is the attempt number
## PROGRESSIVE_ARRAY_ATTEMPTS_UNTIL_COOLDOWN is how many attempts to try before cooling down
## PROGRESSIVE_ARRAY_COOLDOWN_IN_SECONDS____ is the cooldown in seconds

PROGRESSIVE_ARRAY_ATTEMPT_COUNT__________=(1  11 41)
PROGRESSIVE_ARRAY_ATTEMPTS_UNTIL_COOLDOWN=(5   1  1)
PROGRESSIVE_ARRAY_COOLDOWN_IN_SECONDS____=(30 30 60)

The array is the same as this table.

attempt numberattempts until cooldowncooldown
1530
11130
41160

Why can't you use a laptop, or is a Windows or Linux version coming soon?

This script works by emulating USB Human Interface Devices (HID), in this case it is keyboard and mouse input. Laptops have uni-directional USB ports and an Android mobile device/ phone has a bi-directional USB port. A bi-directional port is required to emulate a keyboard.

This might change in the future as USB-C is supposed to be uni-directional.

How Android emulates a keyboard

Keys are sent using /system/xbin/hid-keyboard. To test this and send the key 1 you can use echo 1 | /system/xbin/hid-keyboard dev/hidg0 keyboard

In Kali Nethunter, /system/xbin/hid-keyboard is a compiled copy of hid_gadget_test.c. This is a small program for testing the HID gadget driver that is included in the Linux Kernel. The source code for this file can be found at https://www.kernel.org/doc/html/latest/usb/gadget_hid.html and https://github.com/aagallag/hid_gadget_test.

šŸ”§ Troubleshooting

If it is not bruteforcing PINs

Check the orientation of the cables

The Nethunter phone should have a regular USB cable attached, while the locked phone should have an OTG adaptor attached.

The OTG cable should be connected to the locked Android phone. The regular USB cable should be connected to the Nethunter phone.

Refer to the graphic on how to connect the phones.

Check it is emulating a keyboard

You can verify that the NetHunter phone is succesfully emulating a keyboard by connecting it to a computer using a regular charging/data USB cable. Open a text editor like Notepad while it is cracking and you should see it entering PIN numbers into the text editor.

Note that you will not need an OTG cable for this.

Try restarting the phones

Try powering off the phones and even taking out the batteries if that is possible.

Try new cables

Try using new cables/adaptors as you may have a faulty cable/adaptor.

If it doesn't unlock the phone with a correct PIN

You might be sending keys too fast for the phone to process. Increase the DELAY_BETWEEN_KEYS variable in the config file. šŸ’” If you don't see 4 dots come up on the phone's screen then maybe it is not receiving 4 keys.

šŸ”‹ Managing Power Consumption

If your phone runs out of power too soon, follow these steps:

Check the Diagnostics Report

Use the command diag display diagnostic information.

bash ./android-pin-bruteforce diag

If you receive this message when the USB cable is plugged in then try taking the battery out of the locked Android phone and power cycling it.

[FAIL] HID USB device not ready. Return code from /system/xbin/hid-keyboard was 5.

How the usb-devices command works

The diagnostics command uses the usb-devices script but it is only necessary as part of determining whether the USB cables are incorrectly connected. This can be downloaded from https://github.com/gregkh/usbutils/blob/master/usb-devices

Use verbose output

Use the --verbose option to check the configuration is as expected. This is especially useful when you are modifying the configuration.

Use the dry-run

Use the --dry-run option to check how it operates without sending any keys to a device. This is especially useful when you are modifying the configuration or during development.

Dry run will:

HID USB Mode

Try this command in a shell on the NetHunter phone: /system/bin/setprop sys.usb.config hid

šŸ’£ Known Issues

šŸš€ Roadmap

šŸ™‹ Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

šŸ˜Ž Authors and acknowledgment

Developed by Andrew Horton (@urbanadventurer).

šŸ‘ The following people have been very helpful:

Motivation

My original motivation to develop this was to unlock a Samsung S5 Android phone. It had belonged to someone who had passed away, and their family needed access to the data on it. As I didn't have a USB Rubber Ducky or any other hardware handy, I tried using a variety of methods, and eventually realised I had to develop something new.

Credit

The optimised PIN list is from Justin Engler (@justinengler) & Paul Vines from Senior Security Engineer, iSEC Partners and was used in their Defcon talk, Electromechanical PIN Cracking with Robotic Reconfigurable Button Basher (and C3BO)..

Graphics

Designed by Andrew Horton and gratefully using these free vector packs:

šŸ—æ Comparison with other projects and methods to unlock a locked Android phone

What makes this project unique?

I've been asked what makes this project unique when there are other open-source Android PIN cracking projects.

Android-PIN-Bruteforce is unique because it cracks the PIN on Android phones from a NetHunter phone and it doesn't need the locked phone to be pre-hacked.

It works:

ProjectADB/USB DebuggingRequires rootRequires $ hardwareCommercial
ā­ Android-PIN-BruteforceNoNoNethunter phoneNo
github.com/PentesterES/AndroidPINCrackYesYesNoNo
github.com/ByteRockstar1996/Cracking-Android-Pin-LockYesYesNoNo
github.com/sch3m4/androidpatternlockYesYesNoNo
github.com/georgenicolaou/androidlockcrackerYesYesNoNo
github.com/MGF15/P-DecodeYesYesNoNo
github.com/BitesFor/ABLYesYesNoNo
github.com/wuseman/WBRUTERYesNoNoNo
github.com/Gh005t/Android-BruteForceYesNoNoNo
github.com/mandatoryprogrammer/droidbruteNoNoRubber Ducky $No
github.com/hak5darren/USB-Rubber-DuckyNoNoRubber Ducky $Yes
github.com/bbrother/stm32f4androidbruteforceNoNoSTM32F4 dev board $No
hdb-team.com/product/hdbox/NoNoHDBOX $$Yes
xpinclip.comNoNoXPINClip $$Yes
cellebrite.com/en/ufed/NoNoCellebrite UFED $$$Yes

Some of these projects/products are really awesome but they achieve a different goal to Android-PIN-Bruteforce.

If a project requires a gestures.key or password.key, I've listed it as requiring root. If a project requires a custom bootloader, I've listed that as requiring both ADB and root. If you would like your project listed in this table then please open a new issue. There are links to each of these projects in the šŸ“š Related Projects & Futher Reading section.

šŸ˜­ Regular phone users

šŸ¤– Users who have already replaced their Android ROM

If the phone has already been rooted, has USB debugging enabled, or has adb enabled.

šŸ”¬ Forensic Investigators

These methods can be expensive and are usually only used by specialised phone forensic investigators.

In order of difficulty and expense:

JTAG, ISP, and Chip Off techniques are less useful now because most devices are encrypted. I don't know of any practical attacks on phone PINs that use clock glitching, if you know of a product that uses this technique please let me know so I can include it.

šŸ•µ Security Professionals and Technical Phone Users

Use the USB HID Keyboard Bruteforce with some dedicated hardware.

Attempts to use an otherwise awesome project Duck Hunter, to emulate a RubberDucky payload for Android PIN cracking did not work. It crashed the phone probably because of the payload length.

šŸ“š Related Projects & Futher Reading

USB HID Hardware without NetHunter

hak5 12x17: Hack Any 4-digit Android PIN in 16 hours with a USB Rubber Ducky https://archive.org/details/hak5_12x17

Hak5: USB Rubber Ducky https://shop.hak5.org/products/usb-rubber-ducky-deluxe

USB-Rubber-Ducky Payloads https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads

Teensy https://www.pjrc.com/teensy/

Brute Forcing An Android Phone with a STM32F4Discovery Development Board https://github.com/bbrother/stm32f4androidbruteforce https://hackaday.com/2013/11/10/brute-forcing-an-android-phone/

Automated brute force attack against the Mac EFI PIN (Using a Teensy) https://orvtech.com/atacar-efi-pin-macbook-pro-en.html https://hackaday.io/project/2196-efi-bruteforcer

Droidbrute: An Android PIN cracking USB rubber ducky payload made efficient with a statistically generated wordlist. https://github.com/mandatoryprogrammer/droidbrute

Discussion forum about the hak5 episode, and Android Brute Force 4-digit pin https://forums.hak5.org/topic/28165-payload-android-brute-force-4-digit-pin/

NetHunter HID keyboard attacks

NetHunter HID Keyboard Attacks https://www.kali.org/docs/nethunter/nethunter-hid-attacks/

Linux Kernel HID support

Human Interface Devices (HID) https://www.kernel.org/doc/html/latest/hid/index.html#

Linux USB HID gadget driver and hid-keyboard program https://www.kernel.org/doc/html/latest/usb/gadget_hid.html https://github.com/aagallag/hid_gadget_test

The usb-devices script https://github.com/gregkh/usbutils/blob/master/usb-devices

Cracking Android PIN and Pattern files

AndroidPINCrack - bruteforce the Android Passcode given the hash and salt (requires root on the phone) https://github.com/PentesterES/AndroidPINCrack

Android Pattern Lock Cracker - bruteforce the Android Pattern given an SHA1 hash (requires root on the phone) https://github.com/sch3m4/androidpatternlock

General Recovery Methods

[Android][Guide]Hacking And Bypassing Android Password/Pattern/Face/PI https://forum.xda-developers.com/showthread.php?t=2620456

Android BruteForce using ADB & Shell Scripting https://github.com/Gh005t/Android-BruteForce

Forensic Methods and Hardware

PATCtech Digital Forensics: Getting Past the Android Passcode http://patc.com/online/a/Portals/965/Android%20Passcode.pdf

XPIN Clip https://xpinclip.com/

HDBox from HDB Team https://hdb-team.com/product/hdbox/

Cellebrite UFED https://www.cellebrite.com/en/ufed/

GrayKey from Grayshift https://www.grayshift.com/graykey/

PIN Analysis

Electromechanical PIN Cracking with Robotic Reconfigurable Button Basher (and C3BO) https://www.defcon.org/html/defcon-21/dc-21-speakers.html#Engler

DataGenetics PIN analysis https://datagenetics.com/blog/september32012/index.html