Home

Awesome

This is a learning project trying to implement some varants of SSD in pytorch. SSD is a one-stage object detector, probably "currently the best detector with respect to the speed-vs-accuracy trade-off". There are many follow-up papers that either further improve the detection accuracy, or incorporate techniques like image segmentation to be used for Scene Understanding(e.g. BlitzNet), or modify SSD to detect rotatable objects(e.g. DRBox), or apply SSD to 3d object detection(e.g. Frustum PointNets):

Overview

Modelpublish timeBackboneinput sizeBoxesFPSVOC07VOC12COCO
SSD3002016VGG-16300 × 30087324677.275.925.1
SSD5122016VGG-16512 × 512245641979.878.528.8
SSD3212017.01ResNet-101321 × 3211708011.277.175.428.0
SSD5132017.01ResNet-101513 × 513436886.880.679.431.2
DSSD3212017.01ResNet-101321 × 321170809.578.676.328.0
DSSD5132017.01ResNet-101513 × 513436885.581.580.033.2
RUN3002017.07VGG-16300 × 3001164064 (Pascal)79.177.0
DSOD3002017.08DS/64-192-48-1300 × 30017.477.776.329.3
BlitzNet3002017.08ResNet-50300 × 300453902478.575.429.7
BlitzNet5122017.08ResNet-50512 × 5123276619.580.779.034.1
RefineDet3202017.11VGG-16320 × 320637540.380.078.129.4
RefineDet5122017.11VGG-16512 × 5121632024.181.880.033.0
RefineDet3202017.11ResNet-101320 × 32032.0
RefineDet5122017.11ResNet-101512 × 51236.4
RRC2017.04VGG-161272 × 375
DRBox2017.11VGG-16300 × 300
Frustum PointNets rgb part2017.11VGG-161280 × 384

All backbone networks above have been pre-trained on ImageNet CLS-LOC dataset, except DSOD, it's "training from scratch".

Implemented

Note: "Implemented" above means the code of the model is almost done, it doesn't mean I have trained it, or even reproduced the results of original paper. Actually, I have only trained SSD300 on VOC07, the best result I got is 76.5%, lower than 77.2% reported in SSD paper. I'll continue this project when I find out what's the problem.

Requirements

Dataset

Download dataset VOC2007 and VOC2012, put them under VOCdevkit directory:

VOCdevkit
-| VOC2007
   -| Annotations
   -| ImageSets
   -| JPEGImages
   -| SegmentationClass
   -| SegmentationObject
-| VOC2012
   -| Annotations
   -| ImageSets
   -| JPEGImages
   -| SegmentationClass
   -| SegmentationObject

Usage

train:

python train.py --cuda --voc_root path/to/your/VOCdevkit --backbone path/to/your/vgg16_reducedfc.pth
The backbone network vgg16_reducedfc.pth is from repo amdegroot/ssd.pytorch (download link: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth).

evaluate:

python train.py --cuda --test --voc_root path/to/your/VOCdevkit --checkpoint path/to/your/xxx.pth

show demo:

python train.py --cuda --demo --voc_root path/to/your/VOCdevkit --checkpoint path/to/your/xxx.pth

Results

VOC07 mAP

modelsmy resultpaper result
SSD30076.5%77.2%

to be continued

Reference