Awesome
Surface Normals in the Wild
Code for reproducing the results in the following paper:
Surface Normals in the Wild,
Weifeng Chen, Donglai Xiang, Jia Deng
International Conference on Computer Vision (ICCV), 2017.
Please check out the project site for more details.
Setup
-
Install the Torch 7 framework as described in http://torch.ch/docs/getting-started.html#_. Please make sure that you have the
cudnn
,hdf5
, 'mattorch' andcsvigo
modules installed. -
Clone this repo.
https://github.com/wfchen-umich/surface_normals.git
Evaluating on pre-trained models
Setup
Please first download the data files and pre-trained models into the surface_normals
folder. Download the SNOW dataset from the project site.
Untar data.tar.gz
into surface_normals
. Untar results.tar.gz
into surface_normals/src
. Untar SNOW_Toolkit.tar.gz
into surface_normals/data
. Untar SNOW_images.tar.gz
into surface_normals/data/SNOW_Toolkit
.
NYU Experiments
Change directory into /surface_normals/src/experiment_NYU
.
NYU Subset
To evaluate the pre-trained models ( trained on the NYU labeled training subset), run the following commands:
-
d_n_al:
th test_model_on_NYU_NO_CROP.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log/wn1_n5000_d800/model_period2_100000.t7 -test_set 654_NYU_MITpaper_test_imgs_orig_size_points.csv -mode test
-
d_n_dl:
th test_model_on_NYU_NO_CROP.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log_depth_from_normal/wn100_n5000_d800/model_period2_100000.t7 -test_set 654_NYU_MITpaper_test_imgs_orig_size_points.csv -mode test
NYU Full
To evaluate the pre-trained models ( trained on the full NYU labeled training subset), run the following commands:
-
d_n_al_F:
th test_model_on_NYU_NO_CROP.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log/wn1_n5000_d10000_fullNYU/model_period3_100000.t7 -test_set 654_NYU_MITpaper_test_imgs_orig_size_points.csv -mode test
-
d_n_dl_F:
th test_model_on_NYU_NO_CROP.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log_depth_from_normal/wn100_n5000_d10000_fullNYU/model_period3_90000.t7 -test_set 654_NYU_MITpaper_test_imgs_orig_size_points.csv -mode test
SNOW Experiments
Normals from Predicted Depth:
-
d_n_al_F_SNOW
th test_model_on_SNOW.lua -num_iter 100000 -prev_model_file ../results/hourglass3_softplus_margin_log/SNOW12_from_n5000_d10000_1e-4/model_period3_100000.t7 -mode test
KITTI Experiments
Change directory into /surface_normals/src/experiment_KITTI
. Run the following commands:
-
d:
th test_model_on_KITTI.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log_depth_from_normal/KITTI_1e-4_n0_run2_1e-5/model_period10_200000.t7 -test_set eigen_test_files_combine.csv -mode test
-
d_n_al:
th test_model_on_KITTI.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log/KITTI_1e-4_d5000_n5000_run2_1e-5/model_period7_150000.t7 -test_set eigen_test_files_combine.csv -mode test
-
d_n_dl:
th test_model_on_KITTI.lua -num_iter 1000 -prev_model_file ../results/hourglass3_softplus_margin_log_depth_from_normal/KITTI_1e-4_n5000_run2_1e-5/model_period7_160000.t7 -test_set eigen_test_files_combine.csv -mode test