Home

Awesome

<p align="center"> <img width="400" alt="syncode" src="https://github.com/shubhamugare/syncode/assets/14147610/99c30a9d-b5f5-49ab-9295-33738fde1de2" /> </p>

SynCode: LLM Generation with Grammar Augmentation Test Status

<p align="left"> ā„¹ļø&nbsp;<a href="#-about">About</a> | šŸ“š&nbsp;<a href="#-features">Features</a> | šŸ“–&nbsp;<a href="#-more-about-syncode">More About SynCode</a> | šŸš€&nbsp;<a href="#-quick-start">Quick Start</a> | šŸ‘€&nbsp;<a href="#-example-usage">Example Usage</a> | šŸ¤”&nbsp;<a href="#-faq">FAQs</a> </p> <p> <a href="https://arxiv.org/abs/2403.01632"><img src="https://img.shields.io/badge/Paper-arXiv-blue"></a> </p>

ā„¹ļø About

Builtin Grammars

Python Go SQL JSON Logic

Check Grammars directory for supported grammars

Misc

Define your own grammar using simple EBNF syntax. Check out our notebooks directory for examples and a quick example at Ā  <img align="center" src="https://colab.research.google.com/assets/colab-badge.svg" />

šŸ“š Features

šŸ”„ Fast grammar-guided generation (as little as 10% generation overhead with Python and Go!)
šŸ¤– Seamlessly work with any HuggingFace Language Model, including Code, Chat, and Instruct models
šŸ–ļø Pass in any CFG in the EBNF format (even large grammars for programming languages like Python and Go!)
šŸ“ Built-in CFGs for Python, Go, SQL, Math, JSON, and more!
šŸŽ² Sample with any existing decoding strategy (eg. greedy, beam search, nucleus sampling)

šŸ“– More About SynCode

How SynCode works?

<img width="750" alt="Screenshot 2024-03-21 at 2 22 15 AM" src="https://github.com/uiuc-focal-lab/syncode/assets/14147610/d9d73072-3c9b-47d4-a941-69d5cf8fb1bf">

In the SynCode workflow, the LLM takes partial code C<sub>k</sub> and generates a distribution for the next token t<sub>k+1</sub>. The incremental parser processes C<sub>k</sub> to generate accept sequences A, the sequences of terminals that can follow partial code called accept sequences. Simultaneously, the incremental parser computes a remainder r from the partial code, representing the suffix that may change its terminal type in subsequent generations. The backbone of SynCode is the offline construction of a DFA mask store, a lookup table derived from regular expressions representing the terminals of the language grammar. The DFA mask store facilitates efficient traversal of DFA states, enabling the retrieval of masks mapped to each state and accept sequence. SynCode walks over the DFA using the remainder and uses the mask store to compute the mask specific to each accept sequence. By unifying masks for each accept sequence SynCode gets the set of syntactically valid tokens. The LLM iteratively generates a token t<sub>k+1</sub> using the distribution and the mask, appending it to C<sub>k</sub> to create the updated code C<sub>k+1</sub>. The process continues until the LLM returns the final code C<sub>n</sub> based on the defined stop condition.

šŸš€ Quick Start

Python Installation and Usage Instructions

Simply install SynCode via PyPi using the following command:

pip install git+https://github.com/uiuc-focal-lab/syncode.git

Note: SynCode depends on HuggingFace transformers:

SynCode versionRecommended transformers version
v0.1.4 (latest)v4.44.0
v0.1.2v4.42.0

Usage option 1:

SynCode can be used as a simple logit processor with HuggingFace transformers library interface. Check this notebook for example.

Just import with and initialize it with the appropriate grammar

from syncode import SyncodeLogitsProcessor

and this can be passed as an argument to generate function. For example,

output = model.generate(
          inputs,
          max_length=100, 
          pad_token_id=tokenizer.eos_token_id, 
          logits_processor=[syncode_logits_processor]
        )

Usage option 2:

The other option is to use the SynCode object for inference (this comes with additional optimizations),

from syncode import Syncode

Refer to <a href="###-syncode-arguments">SynCode Arguments</a> for the full list of arguments to initialize the SynCode class. In Python, inference is performed using the infer() method in the SynCode class. infer() has the following arguments:

If both prompt and task_id are not specified, infer() reads user input via stdin.

The following example shows the benefit of SynCode:

In the example below, the unconstrained original Phi-2 model fails to generate a valid JSON object and instead generates Python code.

from syncode import Syncode

# Load the unconstrained original model
llm = Syncode(model="microsoft/phi-2", mode='original', max_new_tokens=50)

prompt = "Please return a JSON object to represent the country India with name, capital, and population?"
output = llm.infer(prompt)[0]
print(f"LLM output:\n{output}\n")

# LLM output:
#
# A:
#
# You can use the following code:
# import json
#
# def get_country_info(country_name):
#    country_info = {
#        'name': country_name,
#        'capital':

When guided with the JSON grammar with SynCode, the model can generate a syntactically valid JSON object.

from syncode import Syncode

# Load the Syncode augmented model
syn_llm = Syncode(model = "microsoft/phi-2", grammar='json', parse_output_only=True, max_new_tokens=50)

prompt = "Please return a JSON object to represent the country India with name, capital, and population?"
output = syn_llm.infer(prompt)[0]
print(f"SynCode output:\n{output}")

# SynCode output:
# {
#     "name": "India",
#     "capital": "New Delhi",
#     "population": "1,366,417,754"
# }

Check more examples of using Python, Go, and other grammars in <a href="#-example-usage">Notebooks</a> and a quick example at Ā  <img align="center" src="https://colab.research.google.com/assets/colab-badge.svg" />

Environment Variables

Optionally, you can set the directories for cache by exporting the following environment variables. Add the following lines to your .bashrc or .zshrc file:

export HF_CACHE="path_to_hf_cache"
export SYNCODE_CACHE="path_to_syncode_cache"

If these environment variables are not set, the tool will use the default cache directories. To use the gated models on HuggingFace such as Llamma models, you can set the environment variable HF_ACCESS_TOKEN

export HF_ACCESS_TOKEN="your_huggingface_api_key"

SynCode Arguments

<details> <summary>Click to Expand on the List of Arguments for SynCode</summary> </details>

Running with CLI

<details> <summary>Running SynCode via CLI</summary>

Clone this repository:

git clone https://github.com/uiuc-focal-lab/syncode.git

To run the tool with CLI, use the following command:

python3 syncode/infer.py
    --mode [original, grammar_mask, grammar_strict]
    --model [model_name]
    --quantize [True, False]
    --device ["cpu", "cuda", "cuda:1" etc.]
    --num_samples [num_samples]
    --dataset [mbxp, humaneval, mathqa-x, input]
    --few_shot [True, False]
    --num_fs_examples [num_fs_examples]
    --chat_mode [True, False]
    --dev_mode [True, False]
    --log_level [0, 1, 2]
    --new_mask_store [True, False]
    --parser ["lr", "lalr"]
    --task_id [task_id]
</details>

šŸ‘€ Example Usage

Check out our notebooks directory which contains various interactive examples that showcase different use cases of SynCode! The grammars for some common programming languages are defined in the grammars directory. We also allow users to define a grammar using a simple EBNF syntax adapted from Lark. Users can pass in a string of rules or a path to a .lark file.

šŸ Generate Indentation-Error-Free Python Code

Large Language Models tend to struggle with generating Python code with correct indentation. Consider the example below. The unconstrained original WizardCoder model fails to generate a code completion with the correct number of spaces. When executing this code, we get an Indentation Error.

from syncode import Syncode

model_name = "WizardLM/WizardCoder-1B-V1.0"

# Load the unconstrained original model
llm = Syncode(model = model_name, mode='original', max_new_tokens=200)
partial_code = "def is_prime(n):\n    '''Return if prime'''\n  "

#generate a completion to the input partial code
unconstrained_output = partial_code+llm.infer(partial_code)[0]

print(unconstrained_output)
# def is_prime(n):
#     '''Return if prime'''
#    if n < 2:
#        return False
#    for i in range(2, int(n**0.5)+1):
#        if n % i == 0:
#            return False
#    return True
exec(unconstrained_output)
# IndentationError: unindent does not match any outer indentation level

SynCode can fix this problem! We simply switch the mode to grammar_mask/grammar_strict to load the SynCode augmented model. With the constrained decoding of SynCode, the LLM is able to generate a correct Python program.

from syncode import Syncode

model_name = "WizardLM/WizardCoder-1B-V1.0"

# Load the Syncode augmented model
syn_llm = Syncode(model=model_name, mode='grammar_strict', grammar='python')
partial_code = "def is_prime(n):\n    '''Return if prime'''\n  "

#generate a completion to the input partial code
constrained_output = partial_code+ syn_llm.infer(partial_code)[0]
print(constrained_output)
# def is_prime(n):
#     '''Return if prime'''
#     if n < 2:
#         return False
#     for i in range(2, int(n**0.5) + 1):
#         if n % i == 0:
#             return False
#     return True
exec(constrained_output)
# Correct Code :)

šŸ”¤ JSON Mode Generation

In the example below, the unconstrained original Phi-2 model fails to generate a valid JSON object and instead generates Python code.

from syncode import Syncode

# Load the unconstrained original model
llm = Syncode(model = "microsoft/phi-2", mode='original', max_new_tokens=50)

prompt = "Please return a json object to represent country India with name, capital and population?"
output = llm.infer(prompt)[0]
print(f"LLM output:\n{output}\n")

# LLM output:
#
# A:
#
# You can use the following code:
# import json
#
# def get_country_info(country_name):
#    country_info = {
#        'name': country_name,
#        'capital':

When guided with the JSON grammar with SynCode, the model is able to generate a syntactically valid JSON object.

from syncode import Syncode

# Load the Syncode augmented model
syn_llm = Syncode(model="microsoft/phi-2", grammar='json', parse_output_only=True, max_new_tokens=50)

prompt = "Please return a json object to represent country India with name, capital and population?"
output = syn_llm.infer(prompt)[0]
print(f"SynCode output:\n{output}")

# SynCode output:
# {
#     "name": "India",
#     "capital": "New Delhi",
#     "population": "1,366,417,754"
# }

šŸ‘¤ Custom Grammar Input

Syncode allows users to define grammar using a simple EBNF syntax adapted from Lark. One can also simply feed the grammar rules directly as a string of rules as shown below.

Please refer to the notebooks directory for examples using custom grammars and instructions for instructions to define your own custom grammar.

In our example, we want our model to only respond in the format month day. Without constrained decoding, the Language Model may not generate output that follows this syntax. Consider the code snippet below.

from syncode import Syncode

model_name = "microsoft/phi-2"

# Load the unconstrained original model
llm = Syncode(model=model_name, mode='original', max_new_tokens=20)

inp = "When is the christmas day?"

output = llm.infer(inp)
print(f"LLM output:\n{repr(output)}\n")
# LLM output:
# 'Christmas Day is on December 25th.\n<|im_end|>\n<|im'

As shown above, the LLM generates a correct response but not in the format we want. We can pass in a grammar and leverage the ability of SynCode to guide the LLM generation with this grammar. As shown in the snippet below, the SynCode augmented LLM generates output in the correct month day format.

from syncode import Syncode

# Pass in a grammar as a string of rules in EBNF format
grammar = """ start: month day 
              
              day: /[1-9]/ | /[1-2][0-9]/ | /3[0-1]/
              
              month: "January" | "February" | "March" | "April" | "May" | "June" | "July" | "August" | "September" | "October" | "November" | "December"
"""

model_name = "microsoft/phi-2"

# Load the Syncode augmented model
syn_llm = Syncode(model=model_name, grammar=grammar, parse_output_only=True)

inp = "When is the christmas day?"

output = syn_llm.infer(inp)
print(f"Syncode augmented LLM output:\n{output}")
# Syncode augmented LLM output:
# December 25 

Ā 

How Does SynCode Compare to Other Constrained Decoders?

ToolRegexCFG*Pre-Computed*GPL*
LMQLāœ…āŒāŒāŒ
GUIDANCEāœ…āœ…āŒāŒ
OUTLINESāœ…āœ…āœ…āŒ
PICARDāœ…āœ…āŒāŒ
SYNCHROMESHāœ…āœ…āŒāŒ
LLAMA.CPPāœ…āœ…āŒāŒ
GCDāœ…āœ…āŒāŒ
SynCodeāœ…āœ…āœ…āœ…

CFG*: Guide generation with a Context Free Grammar (CFG)

Pre-Computed*: Precompute masks over the vocabulary to significantly improve generation speed

GPL*: Support general-purpose programming languages, which involve non-context-free fragments, such as indentation in Python and end-of-scope markers in Golang.

šŸ“œ Citation

<p> <a href="https://arxiv.org/abs/2403.01632"><img src="https://img.shields.io/badge/Paper-arXiv-blue"></a> </p>
@misc{ugare2024syncode,
      title={SynCode: LLM Generation with Grammar Augmentation}, 
      author={Shubham Ugare and Tarun Suresh and Hangoo Kang and Sasa Misailovic and Gagandeep Singh},
      year={2024},
      eprint={2403.01632},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Contact

For questions, please contact Shubham Ugare.