Home

Awesome

UCTB (Urban Computing Tool Box)

Python PyPI https://img.shields.io/badge/license-MIT-green Documentation


Urban Computing Tool Box is a package providing ST paper list, urban datasets, spatial-temporal prediction models, and visualization tools for various urban computing tasks, such as traffic prediction, crowd flow prediction, ride-sharing demand prediction, etc.

UCTB is a flexible and open package. You can use the data we provided or use your data, and the data structure is well stated in the document.

News

2024-03: We have released two new datasets for Metro and Bus applications. These datasets provide hourly estimates of subway and bus ridership. Welcome to explore them!

2023-06: We have released a technical report entitled 'UCTB: An Urban Computing Tool Box for Spatiotemporal Crowd Flow Prediction', introducing the design and implementation principles of UCTB. [arXiv]

2021-11: Our paper on UCTB, entitled 'Exploring the Generalizability of Spatio-Temporal Traffic Prediction: Meta-Modeling and an Analytic Framework', has been accepted by IEEE TKDE! [IEEE Xplore] [arXiv]


ST-Paper List

We maintain a paper list focusing on spatio-temporal prediction papers from venues such as KDD, NeurIPS, AAAI, WWW, ICDE, IJCAI, WSDM, CIKM, and IEEE T-ITS. Note that the metadata may not encompass all relevant papers and could include unrelated ones, as selected by large language models.

<img src="https://uctb.github.io/UCTB/sphinx/md_file/src/image/venue_stat.png" alt=".img" style="zoom: 33%;height: 327px; width:424" />

Urban Datasets

UCTB releases a public dataset repository including the following applications in 4 scenarios, with the detailed information provided in the table below. We are constantly working to release more datasets in the future.

ApplicationCityTime SpanIntervalLink
Bike-sharingNYC2013.07.01-2017.09.305 & 60 mins5 mins 60 mins
Bike-sharingChicago2013.07.01-2017.09.305 & 60 mins5 mins 60 mins
Bike-sharingDC2013.07.01-2017.09.305 & 60 mins5 mins 60 mins
BusNYC2022.02.01-2024.01.1360 mins60 mins
Vehicle SpeedLA2012.03.01-2012.06.285 mins5 mins
Vehicle SpeedBAY2017.01.01-2017.07.015 mins5 mins
Pedestrian CountMelbourne2021.01.01-2022.11.0160 mins60 mins
Ride-sharingChicago (community)2013.01.01-2018.01.0115 mins15 mins
Ride-sharingChicago (census tract)2013.01.01-2018.01.0115 mins15 mins
Ride-sharingNYC2009.01.01-2023.06.015 mins5 mins
MetroNYC2022.02.01-2023.12.2160 mins60 mins

We provide detailed documents about how to use these datasets.


Prediction Models

Currently, the ST prediction model package supports the following models: (This toolbox is constructed based on some open-source repos. We appreciate these awesome implements. See more details).

ModelData FormatSpatial Modeling TechniqueGraph TypeTemporal Modeling TechniqueTemporal KnowledgeModule
ARIMABothN/AN/ASARIMAClosenessUCTB.model.ARIMA
HMBothN/AN/AN/AClosenessUCTB.model.HM
HMMBothN/AN/AHMMClosenessUCTB.model.HMM
XGBoostBothN/AN/AXGBoostClosenessUCTB.model.XGBoost
DeepST [SIGSPATIAL 2016]GridCNNN/ACNNCloseness, Period, TrendUCTB.model.DeepST
ST-ResNet [AAAI 2017]GridCNNN/ACNNCloseness, Period, TrendUCTB.model.ST_ResNet
DCRNN [ICLR 2018]NodeGNNPrior (Sensor Network)RNNClosenessUCTB.model.DCRNN
GeoMAN [IJCAI 2018]NodeAttentionPrior (Sensor Networks)Attention+LSTMClosenessUCTB.model.GeoMAN
STGCN [IJCAI 2018]NodeGNNPrior (Traffic Network)Gated CNNClosenessUCTB.model.STGCN
GraphWaveNet [IJCAI 2019]NodeGNNPrior (Sensor Network) + AdaptiveTCNClosenessUCTB.model.GraphWaveNet
ASTGCN [AAAI 2019]NodeGNN+AttentionPrior (Traffic Network)AttentionCloseness, Period, TrendUCTB.model.ASTGCN
ST-MGCN [AAAI 2019]NodeGNNPrior (Neighborhood, Functional similarity, Transportation connectivity)CGRNNClosenessUCTB.model.ST_MGCN
GMAN [AAAI 2020]NodeAttentionPrior (Road Network)AttentionClosenessUCTB.model.GMAN
STSGCN [AAAI 2020]NodeGNN+AttentionPrior (Spatial Network)AttentionClosenessUCTB.model.STSGCN
AGCRN [NeurIPS 2020]NodeGNNAdaptiveRNNClosenessUCTB.model.AGCRN
MTGNN [KDD 2020]NodeGNNAdaptiveTCNClosenessUCTB.model.MTGNN
STMeta [TKDE 2021]NodeGNNPrior (Proximity, Functionality, Interaction/Same-line)LSTM/RNNCloseness, Period, TrendUCTB.model.STMeta

Visualization Tool

The Visualization tool integrates visualization, error localization, and error diagnosis. Specifically, it allows data to be uploaded and provides interactive visual charts to show model errors, combined with spatiotemporal knowledge for error diagnosis.

<img src="https://uctb.github.io/UCTB/sphinx/md_file/src/image/vis_5.png" alt=".img" style="zoom: 33%;" />

Welcome to visit the website for a trial!

Installation

UCTB toolbox may not work successfully with the upgrade of some packages. We thus encourage you to use the specific version of packages to avoid unseen errors. To avoid potential conflict, we highly recommend you install UCTB vis Anaconda. The installation details are in our documents.

Citation

If UCTB is helpful for your work, please cite and star our project.

@article{uctb_2023,
  title={UCTB: An Urban Computing Tool Box for Spatiotemporal Crowd Flow Prediction},
  author={Chen, Liyue and Chai, Di and Wang, Leye},
  journal={arXiv preprint arXiv:2306.04144},
  year={2023}}

@article{STMeta,
  author={Wang, Leye and Chai, Di and Liu, Xuanzhe and Chen, Liyue and Chen, Kai},
  journal={IEEE Transactions on Knowledge and Data Engineering}, 
  title={Exploring the Generalizability of Spatio-Temporal Traffic Prediction: Meta-Modeling and an Analytic Framework}, 
  year={2023},
  volume={35},
  number={4},
  pages={3870-3884},
  doi={10.1109/TKDE.2021.3130762}}