Awesome
BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation
Install
This repo requires Python 3.6+, Pytorch >= 0.4.1, and CUDA 9.0+.
git clone https://github.com/uark-cviu/BiMaL
cd BiMaL
pip install -e ADVENT
Training
cd ADVENT/advent/scripts
python train.py --cfg nvp_config/gta2cityscape_advent_nvp.yaml
Datasets
- GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
<root_dir>/data/GTA5/ % GTA dataset root
<root_dir>/data/GTA5/images/ % GTA images
<root_dir>/data/GTA5/labels/ % Semantic segmentation labels
...
- Cityscapes: Please follow the instructions in Cityscape to download the images and validation ground-truths. The Cityscapes dataset directory should have this basic structure:
<root_dir>/data/Cityscapes/ % Cityscapes dataset root
<root_dir>/data/Cityscapes/leftImg8bit % Cityscapes images
<root_dir>/data/Cityscapes/leftImg8bit/val
<root_dir>/data/Cityscapes/gtFine % Semantic segmentation labels
<root_dir>/data/Cityscapes/gtFine/val
...
Acknowledgements
This codebase is heavily borrowed from ADVENT.
Citation
If you find this code useful for your research, please consider citing:
@inproceedings{truong2021bimal,
title={BiMaL: Bijective Maximum Likelihood Approach to Domain Adaptation in Semantic Scene Segmentation},
author={Truong, Thanh-Dat and Duong, Chi Nhan and Le, Ngan and Phung, Son Lam and Rainwater, Chase and Luu, Khoa},
booktitle={International Conference on Computer Vision},
year={2021}
}