Home

Awesome

Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection".

http://arxiv.org/abs/2403.02148

News

A Quick Overview

image

Efficiency Advantages

image

Required Environments

conda create -n mim python=3.8
conda activate mim
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0  # causal_conv1d-1.0.0+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm==1.0.1  # mmamba_ssm-1.0.1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install scikit-learn matplotlib thop h5py SimpleITK scikit-image medpy yacs

The .whl files of causal_conv1d and mamba_ssm could be found here. {Baidu}

Citation

Please cite our paper if you find the repository helpful.

@article{chen2024mim,
  title={MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection},
  author={Chen, Tianxiang and Tan, Zhentao and Gong, Tao and Chu, Qi and Wu, Yue and Liu, Bin and Ye, Jieping and Yu, Nenghai},
  journal={arXiv preprint arXiv:2403.02148},
  year={2024}
}