Awesome
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection".
http://arxiv.org/abs/2403.02148
News
-
24-03-15. We have corrected some errors and updated the whole network structure code of our MiM-ISTD. Feel free to use it, especially to more other tasks!
-
24-03-08. Our paper has been released on arXiv.
A Quick Overview
Efficiency Advantages
Required Environments
conda create -n mim python=3.8
conda activate mim
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0 # causal_conv1d-1.0.0+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm==1.0.1 # mmamba_ssm-1.0.1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install scikit-learn matplotlib thop h5py SimpleITK scikit-image medpy yacs
The .whl files of causal_conv1d and mamba_ssm could be found here. {Baidu}
Citation
Please cite our paper if you find the repository helpful.
@article{chen2024mim,
title={MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection},
author={Chen, Tianxiang and Tan, Zhentao and Gong, Tao and Chu, Qi and Wu, Yue and Liu, Bin and Ye, Jieping and Yu, Nenghai},
journal={arXiv preprint arXiv:2403.02148},
year={2024}
}