Home

Awesome

A PyTorch implementation of GraphSAGE

This package contains a PyTorch implementation of GraphSAGE.

Authors of this code package:

Tianwen Jiang (tjiang2@nd.edu), Tong Zhao (tzhao2@nd.edu), Daheng Wang (dwang8@nd.edu).

Environment settings

Basic Usage

Main Parameters:

--dataSet     The input graph dataset. (default: cora)
--agg_func    The aggregate function. (default: Mean aggregater)
--epochs      Number of epochs. (default: 50)
--b_sz        Batch size. (default: 20)
--seed        Random seed. (default: 824)
--unsup_loss  The loss function for unsupervised learning. ('margin' or 'normal', default: normal)
--config      Config file. (default: ./src/experiments.conf)
--cuda        Use GPU if declared.

Learning Method

The user can specify a learning method by --learn_method, 'sup' is for supervised learning, 'unsup' is for unsupervised learning, and 'plus_unsup' is for jointly learning the loss of supervised and unsupervised method.

Example Usage

To run the unsupervised model on Cuda:

python -m src.main --epochs 50 --cuda --learn_method unsup