Home

Awesome

<p align="center"><img src="https://res.cloudinary.com/dnz8pwg9r/image/upload/v1579110518/logo-python_pgvee0.png" width="400"></p> <p align="center"> <a href="https://travis-ci.org/twelvedata/twelvedata-python"><img src="https://travis-ci.org/twelvedata/twelvedata-python.svg?branch=master" alt="Build Status"></a> <a href="https://github.com/twelvedata/twelvedata-python/issues"><img src="https://img.shields.io/github/issues/twelvedata/twelvedata-python" alt="Open Issues"></a> <a href="https://github.com/twelvedata/twelvedata-python/releases"><img src="https://badge.fury.io/py/twelvedata.svg" alt="Latest Stable Version"></a> <a href="https://github.com/twelvedata/twelvedata-python/blob/master/LICENSE.txt"><img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="License"></a> </p>

Twelve Data Python Client for financial API & WebSocket

Official python library for Twelve Data. This package supports all main features of the service:

API key is required. If you don't have it yet, get it by signing up here.

Installation

Use the package manager pip to install Twelve Data API library (without optional dependencies):

pip install twelvedata

Or install with pandas support:

pip install twelvedata[pandas]

Or install with pandas, matplotlib, plotly, and websocket support:

pip install twelvedata[pandas,matplotlib,plotly,websocket-client]

Usage

Supported parameters
ParameterDescriptionTypeRequired
symbolstock ticker (e.g. AAPL, MSFT); <br />physical currency pair (e.g. EUR/USD, CNY/JPY);<br />digital currency pair (BTC/USD, XRP/ETH)stringyes
intervaltime frame: 1min, 5min, 15min, 30min, 45min, 1h, 2h, 4h, 8h, 1day, 1week, 1monthstringyes
apikeyyour personal API Key, if you don't have one - get it herestringyes
exchangeif symbol is traded in multiple exchanges specify the desired one, valid for both stocks and cryptocurrenciesstringno
mic_codeMarket Identifier Code (MIC) under ISO 10383 standard, valid for stocksstringno
countryif symbol is traded in multiple countries specify the desired one, valid for stocksstringno
outputsizenumber of data points to retrieveintno
timezonetimezone at which output datetime will be displayed, supports: UTC, Exchange or according to IANA Time Zone Databasestringno
start_datestart date and time of sampling period, accepts yyyy-MM-dd or yyyy-MM-dd hh:mm:ss formatstringno
end_dateend date and time of sampling period, accepts yyyy-MM-dd or yyyy-MM-dd hh:mm:ss formatstringno
ordersorting order of the time series output, supports desc or ascstringno
dateCould be the exact date, e.g. 2021-10-27, or in human language today or yesterdaystringno

The basis for all methods is the TDClient object that takes the required apikey parameter.

Time series

from twelvedata import TDClient

# Initialize client - apikey parameter is requiered
td = TDClient(apikey="YOUR_API_KEY_HERE")

# Construct the necessary time series
ts = td.time_series(
    symbol="AAPL",
    interval="1min",
    outputsize=10,
    timezone="America/New_York",
)

# Returns pandas.DataFrame
ts.as_pandas()

Other core data endpoints:

Fundamentals

All fundamentals are supported across global markets. Refer to API documentation here and find out which countries support which fundamentals by visiting this page.

Only JSON format is supported accessible via .as_json()

from twelvedata import TDClient

td = TDClient(apikey="YOUR_API_KEY_HERE")

# Get all expiration dates
expirations = td.get_options_expiration(
    symbol="AAPL",
).as_json()['dates']

# Extract only put options for the soonest expiration date
put_options = td.get_options_chain(
    symbol="AAPL",
    side="put",
    expiration_date=expirations[0]
).as_json()['puts']

print(put_options)

Technical indicators

This Python library supports all indicators implemented by Twelve Data. Full list of 100+ technical indicators may be found in API documentation.

from twelvedata import TDClient

td = TDClient(apikey="YOUR_API_KEY_HERE")
ts = td.time_series(
    symbol="ETH/BTC",
    exchange="Huobi",
    interval="5min",
    outputsize=22,
    timezone="America/New_York",
)

# Returns: OHLC, BBANDS(close, 20, 2, EMA), PLUS_DI(9), WMA(20), WMA(40)
ts.with_bbands(ma_type="EMA").with_plus_di().with_wma(time_period=20).with_wma(time_period=40).as_pandas()

# Returns: STOCH(14, 1, 3, SMA, SMA), TSF(close, 9)
ts.without_ohlc().with_stoch().with_tsf().as_json()

Batch requests

With batch requests up to 120 symbols might be returned per single API call. There are two options on how to do this:

# 1. Pass instruments symbols as a string delimited by comma (,)
ts = td.time_series(
    symbol="V, RY, AUD/CAD, BTC/USD:Huobi"
)

# 2. Pass as a list of symbols 
ts = td.time_series(
    symbol=["V", "RY", "AUD/CAD", "BTC/USD:Huobi"]
)

Important. Batch requests are only supported with .as_json() and .as_pandas() formats.

With .as_json() the output will be a dictionary with passed symbols as keys. The value will be a tuple with quotes, just the same as with a single request.

ts = td.time_series(symbol='AAPL,MSFT', interval="1min", outputsize=3)
df = ts.with_macd().with_macd(fast_period=10).with_stoch().as_json()

{
    "AAPL": ({'datetime': '2020-04-23 15:59:00', 'open': '275.23001', 'high': '275.25000', 'low': '274.92999', 'close': '275.01001', 'volume': '393317', 'macd_1': '-0.33538', 'macd_signal_1': '-0.24294', 'macd_hist_1': '-0.09244', 'macd_2': '-0.40894', 'macd_signal_2': '-0.29719', 'macd_hist_2': '-0.11175', 'slow_k': '4.52069', 'slow_d': '7.92871'}, {'datetime': '2020-04-23 15:58:00', 'open': '275.07001', 'high': '275.26999', 'low': '275.00000', 'close': '275.25000', 'volume': '177685', 'macd_1': '-0.31486', 'macd_signal_1': '-0.21983', 'macd_hist_1': '-0.09503', 'macd_2': '-0.38598', 'macd_signal_2': '-0.26925', 'macd_hist_2': '-0.11672', 'slow_k': '14.70578', 'slow_d': '6.82079'}, {'datetime': '2020-04-23 15:57:00', 'open': '275.07001', 'high': '275.16000', 'low': '275.00000', 'close': '275.07751', 'volume': '151169', 'macd_1': '-0.30852', 'macd_signal_1': '-0.19607', 'macd_hist_1': '-0.11245', 'macd_2': '-0.38293', 'macd_signal_2': '-0.24007', 'macd_hist_2': '-0.14286', 'slow_k': '4.55965', 'slow_d': '2.75237'}),
    "MSFT": ({'datetime': '2020-04-23 15:59:00', 'open': '171.59000', 'high': '171.64000', 'low': '171.22000', 'close': '171.42000', 'volume': '477631', 'macd_1': '-0.12756', 'macd_signal_1': '-0.10878', 'macd_hist_1': '-0.01878', 'macd_2': '-0.15109', 'macd_signal_2': '-0.12915', 'macd_hist_2': '-0.02193', 'slow_k': '20.95244', 'slow_d': '26.34919'}, {'datetime': '2020-04-23 15:58:00', 'open': '171.41000', 'high': '171.61000', 'low': '171.33501', 'close': '171.61000', 'volume': '209594', 'macd_1': '-0.12440', 'macd_signal_1': '-0.10408', 'macd_hist_1': '-0.02032', 'macd_2': '-0.14786', 'macd_signal_2': '-0.12367', 'macd_hist_2': '-0.02419', 'slow_k': '39.04785', 'slow_d': '23.80945'}, {'datetime': '2020-04-23 15:57:00', 'open': '171.34500', 'high': '171.48000', 'low': '171.25999', 'close': '171.39999', 'volume': '142450', 'macd_1': '-0.13791', 'macd_signal_1': '-0.09900', 'macd_hist_1': '-0.03891', 'macd_2': '-0.16800', 'macd_signal_2': '-0.11762', 'macd_hist_2': '-0.05037', 'slow_k': '19.04727', 'slow_d': '14.92063'})
}

With .as_pandas() the output will be a 3D DataFrame with MultiIndex for (symbol, datetime).

ts = td.time_series(symbol='AAPL,MSFT', interval="1min", outputsize=3)
df = ts.with_macd().with_macd(fast_period=10).with_stoch().as_pandas()

#                                open       high  ...    slow_k    slow_d
# AAPL 2020-04-23 15:59:00  275.23001  275.25000  ...   4.52069   7.92871
#      2020-04-23 15:58:00  275.07001  275.26999  ...  14.70578   6.82079
#      2020-04-23 15:57:00  275.07001  275.16000  ...   4.55965   2.75237
# MSFT 2020-04-23 15:59:00  171.59000  171.64000  ...  20.95244  26.34919
#      2020-04-23 15:58:00  171.41000  171.61000  ...  39.04785  23.80945
#      2020-04-23 15:57:00  171.34500  171.48000  ...  19.04727  14.92063
# 
# [6 rows x 13 columns]

df.loc['AAPL']

#                           open       high  ...    slow_k   slow_d
# 2020-04-23 15:59:00  275.23001  275.25000  ...   4.52069  7.92871
# 2020-04-23 15:58:00  275.07001  275.26999  ...  14.70578  6.82079
# 2020-04-23 15:57:00  275.07001  275.16000  ...   4.55965  2.75237
# 
# [3 rows x 13 columns]

df.columns

# Index(['open', 'high', 'low', 'close', 'volume', 'macd1', 'macd_signal1',
#        'macd_hist1', 'macd2', 'macd_signal2', 'macd_hist2', 'slow_k',
#        'slow_d'],
#       dtype='object')

Charts

Charts support OHLC, technical indicators and custom bars.

Static

Static charts are based on matplotlib library and require mplfinance package to be installed.

static chart example

from twelvedata import TDClient

td = TDClient(apikey="YOUR_API_KEY_HERE")
ts = td.time_series(
    symbol="MSFT",
    outputsize=75,
    interval="1day",
)

# 1. Returns OHLCV chart
ts.as_pyplot_figure()

# 2. Returns OHLCV + BBANDS(close, 20, 2, SMA) + %B(close, 20, 2 SMA) + STOCH(14, 3, 3, SMA, SMA)
ts.with_bbands().with_percent_b().with_stoch(slow_k_period=3).as_pyplot_figure()

Interactive

Interactive charts are built on top of plotly library.

interactive chart example

from twelvedata import TDClient

td = TDClient(apikey="YOUR_API_KEY_HERE")
ts = td.time_series(
    symbol="DNR",
    outputsize=50,
    interval="1week",
)

# 1. Returns OHLCV chart
ts.as_plotly_figure()

# 2. Returns OHLCV + EMA(close, 7) + MAMA(close, 0.5, 0.05) + MOM(close, 9) + MACD(close, 12, 26, 9)
ts.with_ema(time_period=7).with_mama().with_mom().with_macd().as_plotly_figure().show()

WebSocket

With the WebSocket, a duplex communication channel with the server is established.

Make sure to have websocket_client package installed.

websocket example

Features

Example

import time
from twelvedata import TDClient


messages_history = []


def on_event(e):
    # do whatever is needed with data
    print(e)
    messages_history.append(e)


td = TDClient(apikey="YOUR_API_KEY_HERE")
ws = td.websocket(symbols="BTC/USD", on_event=on_event)
ws.subscribe(['ETH/BTC', 'AAPL'])
ws.connect()
while True:
    print('messages received: ', len(messages_history))
    ws.heartbeat()
    time.sleep(10)

Parameters accepted by the .websocket() object:

Applicable methods on .websocket() object:

Important. Do not forget that WebSockets are only available for Twelve Data users on the Pro plan and above. Checkout the trial here.

Advanced

Custom endpoint

This method is used to request unrepresented endpoints on this package, but which are available at Twelve Data.

endpoint = td.custom_endpoint(
    name="quote",
    symbol="AAPL",
)
endpoint.as_json()

The only required parameter is name which should be identical to the endpoint used at Twelve Data. All others can be custom and will vary according to the method.

Debugging

When the method doesn't return the desired data or throws an error, it might be helpful to understand and analyze the API query behind it. Add .as_url() to any method or chain of methods, and it will return the list of used URLs.

ts = td.time_series(
    symbol="AAPL",
    interval="1min",
    outputsize=10,
    timezone="America/New_York",
).with_bbands().with_ema()

ts.as_url()
# ['https://api.twelvedata.com/time_series?symbol=AAPL&interval=1min&outputsize=10&dp=5&timezone=America/New_York&order=desc&prepost=false&format=JSON&apikey=demo', 
# 'https://api.twelvedata.com/bbands?symbol=AAPL&interval=1min&series_type=close&time_period=20&sd=2&ma_type=SMA&outputsize=10&dp=5&timezone=America/New_York&order=desc&prepost=false&format=JSON&apikey=demo', 
# 'https://api.twelvedata.com/ema?symbol=AAPL&interval=1min&series_type=close&time_period=9&outputsize=10&dp=5&timezone=America/New_York&order=desc&prepost=false&format=JSON&apikey=demo']

API usage

This method gives an overview of the current API credits consumption.

api = td.api_usage()

Support

Visit our official website contact page or support center.

Announcements

Follow us for announcements and updates about this library.

Roadmap

Contributing

  1. Clone repo and create a new branch: $ git checkout https://github.com/twelvedata/twelvedata -b name_for_new_branch.
  2. Make changes and test.
  3. Submit Pull Request with comprehensive description of changes.

License

This package is open-sourced software licensed under the MIT license.