Home

Awesome

PD-1 Targeted Antibody Discovery Using AI Protein Diffusion

Diffusion of Novel, PD-1-targeting Fab Structures with in silico Evaluation

<h3 align="right">Tuple, LLC</h3> <!--<a href="https://www.biorxiv.org/content/10.1101/2024.01.18.576323" target="_blank">![bioRxiv Preprint](https://img.shields.io/badge/bioRvix_Preprint-https://www.biorxiv.org/content/10.1101/2024.01.18.576323-bd2736)</a>-->

<a href="https://journals.sagepub.com/doi/10.1177/15330338241275947" target="_blank">Journal Article</a>

<a href="https://medium.com/@tuplexyz/supporting-the-fight-against-cancer-tuple-unveils-anti-pd-1-antibodies-fully-designed-by-ai-4c2018f15ef7">bioRxiv Preprint</a>

Antibody Generation and Testing

Steps:

  1. Generate Sequences using EvoDiff
  2. Generate Structures using AlphaFold2 (TUPPD1-001 to TUPPD1-009)
  3. Prepare Structures
  4. Generate HADDOCK experiment files
  5. Submit HADDOCK experiments to HPC
    • Create Singularity container from Docker image: singularity build haddock.sif docker://cford38/haddock:2.4_36cores
    • Run experiment generation: bash ./scripts/4_experiment_submission/submit_experiments.sh
      • (Remember to chmod -R 755 the experiments/ folder so that Singularity can execute the scripts.)
  6. Collect best docked PDB structure and metrics for each experiment
  7. Clean up HADDOCK run files