Awesome
This project is Pose Estimation on iOS with Core ML.<br>If you are interested in iOS + Machine Learning, visit here you can see various DEMOs.<br>
Jointed Keypoints | Hatmaps | Still Image |
---|---|---|
<img src="https://user-images.githubusercontent.com/37643248/69563016-acdf3400-0ff3-11ea-8cd0-12df4a86e104.gif" width=240px> | <img src="https://user-images.githubusercontent.com/37643248/69562897-77d2e180-0ff3-11ea-83a7-ee557111b633.gif" width=240px> | <img src="resource/190629-poseestimation-stillimage-demo.gif" width=240px> |
Video source:
Pose Capturing | Pose Matching |
---|---|
<img src="resource/demo-pose-capturing.gif"> | <img src="resource/demo-pose-matching.gif"> |
Features
- Estimate body pose on a image
- Inference with camera's pixel buffer on real-time
- Inference with a photo library's image
- Visualize as heatmaps
- Visualize as lines and points
- Pose capturing and pose matching
How it works
Requirements
- Xcode 9.2+
- iOS 11.0+
- Swift 4
Model
Get PoseEstimationForMobile's model
Download this temporary models from following link.
Or
☞ Download Core ML model model_cpm.mlmodel or hourglass.mlmodel.
input_name_shape_dict = {"image:0":[1,192,192,3]} image_input_names=["image:0"] <br>output_feature_names = ['Convolutional_Pose_Machine/stage_5_out:0']
Model Size, Minimum iOS Version, Input/Output Shape
Model | Size<br>(MB) | Minimum<br>iOS Version | Input Shape | Output Shape |
---|---|---|---|---|
cpm | 2.6 | iOS11 | [1, 192, 192, 3] | [1, 96, 96, 14] |
hourhglass | 2 | iOS11 | [1, 192, 192, 3] | [1, 48, 48, 14] |
Infernece Time (ms)
Model vs. Device | 11<br>Pro | XS<br>Max | XR | X | 8 | 8+ | 7 | 7+ | 6S+ | 6+ |
---|---|---|---|---|---|---|---|---|---|---|
cpm | 5 | 27 | 27 | 32 | 31 | 31 | 39 | 37 | 44 | 115 |
hourhglass | 3 | 6 | 7 | 29 | 31 | 32 | 37 | 42 | 48 | 94 |
Total Time (ms)
Model vs. Device | 11<br>Pro | XS<br>Max | XR | X | 8 | 8+ | 7 | 7+ | 6S+ | 6+ |
---|---|---|---|---|---|---|---|---|---|---|
cpm | 23 | 39 | 40 | 46 | 47 | 45 | 55 | 58 | 56 | 139 |
hourhglass | 23 | 15 | 15 | 38 | 40 | 40 | 48 | 55 | 58 | 106 |
FPS
Model vs. Device | 11<br>Pro | XS<br>Max | XR | X | 8 | 8+ | 7 | 7+ | 6S+ | 6+ |
---|---|---|---|---|---|---|---|---|---|---|
cpm | 15 | 23 | 23 | 20 | 20 | 21 | 17 | 16 | 16 | 6 |
hourhglass | 15 | 23 | 23 | 24 | 23 | 23 | 19 | 16 | 15 | 8 |
Get your own model
Or you can use your own PoseEstimation model
Build & Run
1. Prerequisites
1.1 Import pose estimation model
Once you import the model, compiler generates model helper class on build path automatically. You can access the model through model helper class by creating an instance, not through build path.
1.2 Add permission in info.plist for device's camera access
2. Dependencies
No external library yet.
3. Code
3.1 Import Vision framework
import Vision
3.2 Define properties for Core ML
// properties on ViewController
typealias EstimationModel = model_cpm // model name(model_cpm) must be equal with mlmodel file name
var request: VNCoreMLRequest!
var visionModel: VNCoreMLModel!
3.3 Configure and prepare the model
override func viewDidLoad() {
super.viewDidLoad()
visionModel = try? VNCoreMLModel(for: EstimationModel().model)
request = VNCoreMLRequest(model: visionModel, completionHandler: visionRequestDidComplete)
request.imageCropAndScaleOption = .scaleFill
}
func visionRequestDidComplete(request: VNRequest, error: Error?) {
/* ------------------------------------------------------ */
/* something postprocessing what you want after inference */
/* ------------------------------------------------------ */
}
3.4 Inference 🏃♂️
// on the inference point
let handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer)
try? handler.perform([request])
Performance Test
1. Import the model
You can download cpm or hourglass model for Core ML from tucan9389/pose-estimation-for-mobile repo.
2. Fix the model name on PoseEstimation_CoreMLTests.swift
<img src="resource/fix-model-name-for-testing.png" width="660px">
3. Run the test
Hit the ⌘ + U
or click the Build for Testing
icon.
See also
- motlabs/iOS-Proejcts-with-ML-Models<br> : The challenge using machine learning model created from tensorflow on iOS
- tucan9389/PoseEstimation-TFLiteSwift<br> : The pose estimation with TensorFlowLiteSwift pod for iOS (Preparing...)
- edvardHua/PoseEstimationForMobile<br> : TensorFlow project for pose estimation for mobile
- tucan9389/pose-estimation-for-mobile<br> : forked from edvardHua/PoseEstimationForMobile
- tucan9389/FingertipEstimation-CoreML<br> : iOS project for fingertip estimation using CoreML.