Home

Awesome

MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting in CVPR2022

We proposed a novel approach for high-fidelity image inpainting. Specifically, we use a single predictive network to conduct predictive filtering at the image level and deep feature level, simultaneously. The image-level filtering is to recover details, while the deep feature-level filtering is to complete semantic information, which leads to high-fidelity inpainting results. Our method outperforms state-of-the-art methods on three public datasets. [ArXiv] <br>

<p align="center"> <a href = "https://colab.research.google.com/drive/16mdFLTaBGyeQMO5KErDTClr3gW4WP1di?usp=sharing"> <img src="./images/colab.svg"> </a> <br> Try our method in Google Colab </p>

example_a

example_a example_b example_c example_d example_e example_f example_g example_h example_i example_l

Environment setup

conda create -n misf_env python=3.7

conda activate misf_env

conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch

pip install -r requirements.txt

Train

python train.py <br> For the parameters: checkpoints/config.yml

Test

Such as test on the places2 dataset, please following:

  1. Make sure you have downloaded the "places2_InpaintingModel_gen.pth" and put that inside the checkpoints folder.
  2. python test_one.py --img_path='./data/image/10.jpg' --mask_path='./data/mask/10_mask.png' --model_path='./checkpoints/places2_InpaintingModel_gen.pth'

Pretrained models

CelebA

Places2

Dunhuang

Dataset

  1. For data folder path (CelebA) organize them as following:
--CelebA
   --train
      --1-1.png
   --valid
      --1-1.png
   --test
      --1-1.png
   --mask-train
	  --1-1.png
   --mask-valid
      --1-1.png
   --mask-test
      --0%-20%
        --1-1.png
      --20%-40%
        --1-1.png
      --40%-60%
        --1-1.png
  1. Run the code ./data/data_list.py to generate the data list

Architecture details

<br><br> Framework

Comparsion with SOTA

Framework

Bibtex

@article{li2022misf,
  title={MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting},
  author={Li, Xiaoguang and Guo, Qing and Lin, Di and Li, Ping and Feng, Wei and Wnag, Song},
  journal={CVPR},
  year={2022}
}

Acknowledgments

Parts of this code were derived from:<br> https://github.com/tsingqguo/efficientderain <br> https://github.com/knazeri/edge-connect