Home

Awesome

CoupleNet

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

The Code is modified from py-R-FCN, please follow the procedure in it to prepare the training data and testing data. Using the default hyperparameters and iterations, you can achieve a mAP around 81.7%.<br>

Main results

 training datatest datamAP@0.5time/img(ms)
CoupleNet, ResNet-101<sup>**</sup>VOC 07+12VOC 07 test81.7%102
CoupleNet, ResNet-101VOC 07+12VOC 07 test82.1%122
CoupleNet, ResNet-101VOC 07++12VOC 12 test80.4%122

**: without adding context.

 training datatest datamAP@[0.5:0.95]time/img(ms)
CoupleNet, ResNet-101COCO 2014 trainvalCOCO test dev34.4%122

VOC 0712 model (trained on VOC 07+12, mAP 81.7%)

Citing CoupleNet

If you find CoupleNet useful in your research, please consider citing:

@article{zhu2017couplenet,
    title={CoupleNet: Coupling Global Structure with Local Parts for Object Detection},
    author={Zhu, Yousong and Zhao, Chaoyang and Wang, Jinqiao and Zhao, Xu and Wu, Yi and Lu, Hanqing},
    journal={arXiv preprint arXiv:1708.02863},
    year={2017}
}