Home

Awesome

AspDecSSCL

A Self-Supervised Contrastive Learning Framework for Aspect Detection

image image image image image image

This repository is a pytorch implementation for the following AAAI'21 paper:

A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection

Tian Shi, Liuqing Li, Ping Wang, Chandan K. Reddy

Video Presentation

Requirements

Dataset

You can download processed dataset from here. Place them along side with AapDecSSCL.

|--- AspDecSSCL
|--- Data
|    |--- bags_and_cases
|    |--- restaurant
|    |    |--- dev.txt
|    |    |--- test.txt
|    |    |--- train.txt
|    |    |--- train_w2v.txt
|--- cluster_results (results, automatically build)
|--- nats_results (results, automatically build)
|

Train your model from scratch

Prepare word and aspect embeddings.

Train word2vec: python3 run.py --task word2vec

Run Kmeans: python3 run.py --task kmeans

Check Kmeans Keywords python3 run.py --task kmeans-keywords

Self-supervised Learning (Teacher Model)

SSCL Training python3 run.py --task sscl-train

Before validation, you need to perform aspect mapping. There is a file aspect_mapping.txt in nats_results. For general, please change nomap to none. Other aspects should use their names. Please check test.txt to validate the names.

SSCL validation python3 run.py --task sscl-validate

SSCL testing python3 run.py --task sscl-test

SSCL evaluate python3 run.py --task sscl-evaluate

SSCL teacher python3 run.py --task sscl-teacher

SSCL clean results python3 run.py --task sscl-clean

Student Model

SSCLS training python3 run.py --task student-train

SSCLS validation python3 run.py --task student-validate

SSCLS testing python3 run.py --task student-test

SSCLS testing python3 run.py --task student-evaluate

SSCLS clean python3 run.py --task student-clean

Citation

@article{shi2020simple,
  title={A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection},
  author={Shi, Tian and Li, Liuqing and Wang, Ping and Reddy, Chandan K},
  journal={arXiv preprint arXiv:2009.09107},
  year={2020}
}