Awesome
AgriSen-COG: a Large-Scale Dataset for Crop Detection
Table Of Contents
Introduction <a name="introduction"></a>
Code for AgriSen-COG dataset. This repository is going to be public once the dataset is published.
This repository introduces the AgriSen-COG Dataset, a multicountry, multitemporal large-scale Sentinel-2 Benchmark Dataset for Crop Detection.
Dataset Repositories <a name="data"></a>
Each repository contains the dataset, including the following - Austria (2019, 2020), Belgium (2019, 2020), Catalonia(2019, 2020), Denmark (2019, 2020), Netherlands (2019, 2020).
Dropbox
Link: https://www.dropbox.com/sh/5bc55skio0o5xd7/AAAQVG3ZmVGFNvPiltQ9Esqma?dl=0
AgriSen-COG/
:intermediate_outputs/
: Contains the intermediate outputs of dataset preparation.output1_1_original_lpis/
: Contains the original LPIS.output1_2_lpis_gpkg/
: Contains the original LPIS as GPKG.output1_2_lpis_parquet/
: Contains the original LPIS as partioned Parquet files.output1_3_lpis_en/
: Contains the english version of each LPIS as partitioned Parquet.output1_4_lpis_icc/
: Contains the ICC code mapped version of each english LPIS as partitioned Parquet.
Zenodo
Link: https://doi.org/10.5281/zenodo.7892012
output1_1_original_lpis.zip
: Contains the original LPIS.output1_2_lpis_gpkg.zip
: Contains the original LPIS as GPKG.output1_2_lpis_parquet.zip
: Contains the original LPIS as partioned Parquet files.output1_3_lpis_en.zip
: Contains the english version of each LPIS as partitioned Parquet.output1_4_lpis_icc.zip
: Contains the ICC code mapped version of each english LPIS as partitioned Parquet.
Minio S3 Bucket
Endpoint:
https://s3-3.services.tselea.info.uvt.ro(updated on the 4th of June 2023)- https://s3-4.services.tselea.info.uvt.ro (updated on the 7th of March 2024)
Bucket name: agrisen-cog-v1
Set anonymous access.
agrisen-cog-v1/
:LPIS_processing/
:original_files/
: Contains the original LPIS as partioned Parquet files.en_files/
: Contains the english version of each LPIS as partitioned Parquet.icc_en_files/
: Contains the ICC code mapped version of each english LPIS as partitioned Parquet.
Hands-on Tutorials <a name="notebooks"></a>
In the notebooks
folder we provide an overview of the following tasks:
- OriginalLPISView.ipynb - View the original LPIS data as gpkg (local files) and Parquet (local and S3).
- EnLPISView.ipynb - View the english and standardized LPIS data as partioned Parquet (S3 reading example).
- ICCLPISView - View the ICC code mapped version of each english LPIS as partitioned Parquet (S3 reading example).
Project's Overview <a name="project"></a>
Each package/directory contains usage examples.
lpis_files
: Directory with multiple LPIS descriptions.lpis_processing
: Package for the LPIS data processing.
If you use our code, please cite:
Selea, Teodora. "AgriSen-COG, a Multicountry, Multitemporal Large-Scale Sentinel-2 Benchmark Dataset for Crop Mapping Using Deep Learning." Remote Sensing 15.12 (2023): 2980.
@article{selea2023agrisen,
title={AgriSen-COG, a Multicountry, Multitemporal Large-Scale Sentinel-2 Benchmark Dataset for Crop Mapping Using Deep Learning},
author={Selea, Teodora},
journal={Remote Sensing},
volume={15},
number={12},
pages={2980},
year={2023},
publisher={MDPI}
}
Selea, T. (2023). AgriSen-COG.LPIS.GT. [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7892012
@dataset{selea2023agrisen,
author = {Selea, T.},
title = {AgriSen-COG.LPIS.GT.},
year = {2023},
publisher = {Zenodo},
doi = {10.5281/zenodo.7892012},
url = {https://doi.org/10.5281/zenodo.7892012},
}