Home

Awesome

Computational Autonomy for Materials Discovery (CAMD)

Testing - main Linting Coverage Status Binder

CAMD provides a flexible software framework for sequential / Bayesian optimization type campaigns for materials discovery. Its key features include:

A more in-depth description of the scientific framework can be found in this recent open-access article, which demonstrates an end-to-end CAMD-based framework for autonomous inorganic materials discovery using cloud-based density functional theory calculations.

Getting started

For a quick start, explore the tutorial with binder. If you want to install locally, follow the instructions below and explore the examples.

Installation

CAMD can be installed using pip as pip install camd. If issues are encountered, we recommend following the installation procedures below:

Note that, since qmpy is currently only python 2.7 compatible, CAMD python 3 compatibility depends on a custom fork of qmpy here, which is installed using the setup.py procedure.

We recommend using Anaconda python, and creating a fresh conda environment for the install (e. g. conda create -n MY_ENV_NAME).

Linux

Install numpy via pip first, since the build depends on this and numpy has some difficulty recognizing its own install. Then install requirements and use setup.py.

pip install numpy
pip install -r requirements.txt
python setup.py develop

Mac OSX

First dependencies via homebrew. Thanks to the contributors to this stack exchange thread.

brew install gcc

Install numpy via pip first, since the build depends on this and numpy has some difficulty recognizing its own install. Then install requirements and use setup.py.

pip install numpy
pip install -r requirements.txt
python setup.py develop

Data download

Datasets for featurized OQMD entries for after-the-fact testing can be downloaded at data.matr.io/3. These are done automatically in the code and stored in the camd/_cache directory.

Citation

If you use CAMD, we kindly ask you to cite the following publication: