Awesome
chgemm
chgemm is an symmetric int8 project, which is slightly different from BLAS sgemm:
- when you input an int8_t type of matrix [-127,+127], you will get an int32_t one. PS: pay attention to the overflow;
- considering the application scene of the deeep learning, the packAB interface is open and can be adjusted;
- the common design plan is
alpha*A*B+beta*C=C
, but mine isC=A*B
, because they have no utility in deep learning inference; - row major;
- the speed of this project is quicker than any other projects'.
chgemm 是一个 int8 gemm 工程,与 BLAS gemm 不完全相同:
- 输入为 [-127, +127] 范围内的 int8_t 类型矩阵,输出为 int32_t 矩阵。需注意溢出;
- 更多地为深度学习应用场景考虑,packAB 接口暴露出来可以调整;
- 实现为 C = A * B。alpha 和 beta 在深度学习推理中无实用意义;
- 行主序实现,放弃远古 fortran 时代的列主序;
- 不低于其他项目的 symmint8 gemm 速度。
test result
Compiled on RK3399 with -O3
flag. The current peek can be 18.6 gflops, and the orange line is the single-core fp32 limit(14.3 gflops).
速度
-O3 编译,目前在 rk3399 单核结果。目前极限可以到 18.6 gflops,橙线是 rk3399 单核 fp32 极限。 在 aws A72 单核测试约 23 gflops,是此实现方法的极限(发挥 100% 性能)。
使用方式
- 修改
makefile
中的OLD
和NEW
挑选不同实现方式。首次运行需要OLD
和NEW
是同一个 make run
即输出速度结果parameters.h
可修改测试参数
集成方式
参照 MMult_4x8_21.c 调用矩阵乘法,将代码嵌入到自己的项目中。可根据推理库的实现做相应修改。
application with chgemm inside
chgemm is pleased to support ncnn available, check gemm_symm_int8.h.