Awesome
GermLM
Exploring Multilingual Language Models and their effectinves for Named Entity Recognition (NER) in German and English.
Requierements
- Python 3.x
Requierements can be installed via pip
using the requierements.txt
.
We use
- pytorch
- pytorch_pretrained_bert
- fastai
It is recommended to run the experiments on at least 1 GPU. Our experiments were conducted using 2. The prediction is run on CPU only.
NER experiments
We uset Google's BERT model (english bert base and multilingual bert base, both cased) and evaluate them on the [CoNLL-2003] NER dataset.
Create the appropriate datasets using the makefile
Run run_ner.py
. Usage (listing the most important options) :
lang
: select the language to train. Supported languages areeng
,deu
, andengm
using the english data on the multilingual modelsbatch_size
lr
: define learning rateepochs
: define epochs to traindataset
: path to dataset. Note:lang
will be appended to this path to access the language specific dataset.loss
: set tozero
to mask of all padding during loss calculationds_size
: limit the dataset loaded for testingbertAdam
: if flag set uses the BertAdam optimisersave
: saves the final model, it can then be loaded withpredict.py
for NER.
(Example) Replicating English BERT NER experiment
Create the dataset:
make dataset-engI
Train the NER model:
python run_ner.py --do-train --do-eval --lr=3e-5 --batch-size=16 --epochs=4 --bertAdam --dataset=data/conll-2003-I/
[DEMO] Use your trained model for NER
If you use run_ner.py
with the save
flag, the saved model can be loaded in predict.py
and it will recognise the named entities of the senteces provided. Note, you just need to proved the file name, the learner will automatically look for it in it's directory and append to correct extension.
python predict.py eng_3_model
Example output:
Loading model...
Lang: eng
Model: bert-base-cased
Run: eng_3_model
Done
Enter sentence: Antonia goes to Trinity College Dublin, in Ireland.
input: ['[CLS]', 'Anton', '##ia', 'goes', 'to', 'Trinity', 'College', 'Dublin', ',', 'in', 'Ireland', '.', '[SEP]']
tensor([0, 4, 0, 1, 1, 5, 5, 5, 1, 1, 2, 1, 0])
Named Entities
Antonia I-PER
goes O
to O
Trinity I-ORG
College I-ORG
Dublin, I-ORG
in O
Ireland. I-LOC
Enter sentence: ...
Fine-tuning experiments
We apply the LM fine-tuning methods from ULMFIT to the BERT model, in order to boost performance. It does not work.
LM - pretraining
Use conl_to_docs
from ner_data.py
to convert the trainings set to a document of sentences.
Use the output file you specified as input to the data generation:
make 2bert DIR='data/conll-2003/eng/' M='bert-base-cased' E=20
Then fine-tune the language model on the task data:
make pretrain_lm FILE='lm_finetune.py' DIR='data/conll-2003/deu/' M='bert-base-multilingual-cased' E=20
Task-finetuning
Learnig rates were selected using the jupter notebooks.
Run task-finetuning.py
to fine-tuning using the tuning methods from ULMFIT. Add tuned_learner
to load the fine-tuned LM:
python task-finetuning.py --batch-size=16 --epochs=4 --lr=5e-5 --do-train --do-eval --dataset=data/conll-2003-I/ --lang=deu --tuned-learner='pretrain/pytorch_fastai_model_i_bert-base-multilingual-cased_10.bin'
Results
English
model | datset | dev f1 | test f1 |
---|---|---|---|
BERT Large | - | 96.6 | 92.8 |
BERT Base | - | 96.4 | 92.4 |
English BERT (ours) | IOB1 | 96.4 | 92.6 |
" | BIO | 95.6 | 92.2 |
Mutlilingual BERT (ours) | IOB1 | 96.4 | 91.9 |
" | BIO | 96.5 | 92.1 |
German
model | datset | dev f1 | test f1 |
---|---|---|---|
Ahmed & Mehler | IOB1 | - | 83.64 |
Riedl & Pado | - | - | 84.73 |
Mutlilingual BERT (ours) | IOB1 | 88.44 | 85.81 |
" | BIO | 87.49 | 84.98 |
Fine-tuning showed no improvement, the results stayed about the same.
File overview:
bert_train_data.py
: generates data for LM fine-tuning (seemake 2bert
for example usage){deu|eng}-tune-ex-i.ipynb
: used to select discriminative learning rates for fine-tuninglearner.py
: provides helper functions for the fastai learner: e.g loss function , metric callbacklm_finetune.py
: fine-tunes LM on pregenerated bert datamakefile
: make instructions for dataset generation etc.ner_data.py
: contains the data preprocessingoptimizer.py
: adation of BertAdam optimiser to work with fastaiplots.ipynb
: generate plots for discriminative learning rate selection.predict.py
: use pretrained model for NERrequirements.txt
: requirements of projectrun_ner.py
: Run NER experiment; train bert model on conll-2003 datatask-finetune.py
: fine-tune with ULMFIT fine-tuning methods (current discriminative lrs are hard coded).