Home

Awesome

TrTr: Visual Tracking with Transformer

We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on several benchmarks and our method performs favorably against state-of-the-art algorithms.

<div align="center"> <img src="images/network.png" width="800px" /> <p>Network architecture of TrTr for visual tracking</p> </div>

Installation

Install dependencies

$ ./install.sh ~/anaconda3 trtr 

note1: suppose you have the anaconda installation path under ~/anaconda3.

note2: please select a proper cuda-toolkit version to install Pytorch from conda, the default is 10.1. However, for RTX3090, please select 11.0. Then the above installation command would be $ ./install.sh ~/anaconda3 trtr 11.0.

Activate conda environment

$ conda activate trtr

Quick Start: Using TrTr

Webcam demo

Offline Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth --use_baseline_tracker

Online Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth

image sequences (png, jpeg)

add option --video_name ${video_dir}

video (mp4 or avi)

add option --video_name ${video_name}

Benchmarks

Download testing datasets

Please read this README.md to prepare the dataset.

Basic usage

Test tracker

$ cd benchmark
$ python test.py --cfg_file ../parameters/experiment/vot2018/offline.yaml

Eval tracker

$ cd benchmark
$ python eval.py

(Option) Hyper-parameter search

$ python hp_search.py --tracker.checkpoint ../networks/trtr_resnet50.pth --tracker.search_sizes 280 --separate --repetition 1  --use_baseline_tracker --tracker.model.transformer_mask True

Train

Download training datasets

Please read this README.md to prepare the training dataset.

Download VOT2018 dataset

  1. Please download VOT2018 dataset following [this REAMDE], which is necessary for testing the model during training.
  2. Or you skip this testing process by assigning several parameter, which are explained later.

Test with single GPU

$ python main.py  --cfg_file ./parameters/train/default.yaml --output_dir train

note1: please check ./parameters/train/default.yaml for the parameters for training note2: --output_dir to assign the path to store the training result. The above commmand genearte ./train note3: maybe you have to modify the file limit: ulimit -n 8192. Write in ~/.bashrc maybe better. note4: you can a larger value for --benchmark_start_epoch than for --epochs to skip benchmark test. e.g., --benchmark_start_epoch 21 and --epochs 20

debug mode for quick checking the training process:

$ python main.py  --cfg_file ./parameters/train/default.yaml  --batch_size 16 --dataset.paths ./datasets/yt_bb/dataset/Curation  ./datasets/vid/dataset/Curation/ --dataset.video_frame_ranges 3 100  --dataset.num_uses 100 100  --dataset.eval_num_uses 100 100  --resume networks/trtr_resnet50.pth --benchmark_start_epoch 0 --epochs 10

Multi GPUs

multi GPUs in single machine

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train

--nproc_per_node: is the number of GPU to use. The above command means use two GPUs in a machine.

multi GPUs in multi machines

Master Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train  --benchmark_start_epoch 8

Slave1 Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml