Awesome
The gpb is a compiler for Google protocol buffer definitions files for Erlang.
Shortcuts: API documentation ~ gpb on hex.pm
Basic example of using gpb
Let's say we have a protobuf file, x.proto
message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;
}
We can generate code for this definition in a number of different ways. Here we use the command line tool. For info on integration with rebar, see further down.
# .../gpb/bin/protoc-erl -I. x.proto
Now we've got x.erl
and x.hrl
. First we compile it and then we can
try it out in the Erlang shell:
# erlc -I.../gpb/include x.erl
# erl
Erlang/OTP 19 [erts-8.0.3] [source] [64-bit] [smp:12:12] [async-threads:10] [kernel-poll:false]
Eshell V8.0.3 (abort with ^G)
1> rr("x.hrl").
['Person']
2> x:encode_msg(#'Person'{name="abc def", id=345, email="a@example.com"}).
<<10,7,97,98,99,32,100,101,102,16,217,2,26,13,97,64,101,
120,97,109,112,108,101,46,99,111,109>>
3> Bin = v(-1).
<<10,7,97,98,99,32,100,101,102,16,217,2,26,13,97,64,101,
120,97,109,112,108,101,46,99,111,109>>
4> x:decode_msg(Bin, 'Person').
#'Person'{name = "abc def",id = 345,email = "a@example.com"}
In the Erlang shell, the rr("x.hrl")
reads record definitions, and
the v(-1)
references a value one step earlier in the history.
Mapping of protocol buffer datatypes to Erlang
<table> <thead><tr><th>Protobuf type</th><th>Erlang type</th></tr></thead> <tbody> <!-- = = = = = = = = = = = = = = = = = = = = = = = = = = = --> <tr><td>double, float</td> <td>float() | infinity | '-infinity' | nan<br/> When encoding, integers, too, are accepted</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td> int32, int64<br/> uint32, uint64<br/> sint32, sint64<br/> fixed32, fixed64<br/> sfixed32, sfixed64</td> <td>integer()</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>bool</td> <td>true | false<br/> When encoding, the integers 1 and 0, too, are accepted</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>enum</td> <td>atom()<br/> unknown enums decode to integer()</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>message</td> <td>record (thus tuple())<br/> or map() if the maps (-maps) option is specified</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>string</td> <td>unicode string, thus list of integers<br/> or binary() if the strings_as_binaries (-strbin) option is specified<br/> When encoding, iolists, too, are accepted</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>bytes</td> <td>binary()<br/> When encoding, iolists, too, are accepted</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>oneof</td> <td><tt>{ChosenFieldName, Value}</tt><br/> or <tt>ChosenFieldName => Value</tt> if the {maps_oneof,flat} (-maps_oneof flat) option is specified</td></tr> <!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - --> <tr><td>map<_,_></td> <td>An unordered list of 2-tuples, <tt>[{Key,Value}]</tt><br/> or a map(), if the maps (-maps) option is specified</td></tr> </tbody></table>Repeated fields are represented as lists.
Optional fields are represented as either the value or undefined
if
not set. However, for maps, if the option maps_unset_optional
is set
to omitted
, then unset optional values are omitted from the map,
instead of being set to undefined
when encoding messages. When
decoding messages, even with maps_unset_optional
set to omitted
,
the default value will be set in the decoded map.
Examples of Erlang format for protocol buffer messages
Repeated and required fields
message m1 {
repeated uint32 i = 1;
required bool b = 2;
required eee e = 3;
required submsg sub = 4;
}
message submsg {
required string s = 1;
required bytes b = 2;
}
enum eee {
INACTIVE = 0;
ACTIVE = 1;
}
Corresponding Erlang
#m1{i = [17, 4711],
b = true,
e = 'ACTIVE',
sub = #submsg{s = "abc",
b = <<0,1,2,3,255>>}}
%% If compiled to with the option maps:
#{i => [17, 4711],
b => true,
e => 'ACTIVE',
sub => #{s => "abc",
b => <<0,1,2,3,255>>}}
Optional fields
message m2 {
optional uint32 i1 = 1;
optional uint32 i2 = 2;
}
Corresponding Erlang
#m2{i1 = 17} % i2 is implicitly set to undefined
%% With the maps option
#{i1 => 17}
%% With the maps option and the maps_unset_optional set to present_undefined:
#{i1 => 17,
i2 => undefined}
Oneof fields
This construct first appeared in Google protobuf version 2.6.0.
message m3 {
oneof u {
int32 a = 1;
string b = 2;
}
}
Corresponding Erlang
A oneof field is automatically always optional.
#m3{u = {a, 17}}
#m3{u = {b, "hello"}}
#m3{} % u is implicitly set to undefined
%% With the maps option
#{u => {a, 17}}
#{u => {b, "hello"}}
#{} % If maps_unset_optional = omitted (default)
#{u => undefined} % With maps_unset_optional set to present_undefined
%% With the {maps_oneof,flat} option (requires maps_unset_optional = omitted)
#{a => 17}
#{b => "hello"}
#{}
Map fields
Not to be confused with Erlang maps.
This construct first appeared in Google protobuf version 3.0.0 (for
both the proto2
and the proto3
syntax)
message m4 {
map<uint32,string> f = 1;
}
Corresponding Erlang
For records, the order of items is undefined when decoding.
#m4{f = []}
#m4{f = [{1, "a"}, {2, "b"}, {13, "hello"}]}
%% With the maps option
#{f => #{}}
#{f => #{1 => "a", 2 => "b", 13 => "hello"}}
Unset optionals and the default
option
For proto2 syntax
This describes how decoding works for optional fields that are not present in the binary-to-decode.
The documentation for Google protobuf says these decode to the default
value if specified, or else to the field's type-specific default. The
code generated by Google's protobuf compiler also contains
has_<field>()
methods so one can examine whether a field was
actually present or not.
However, in Erlang, the natural way to set and read fields is to just use the syntax for records (or maps), and this leaves no good way to at the same time both convey whether a field was present or not and to read the defaults.
So the approach in gpb
is that you have to choose: either or.
Normally, it is possible to see whether an optional field is
present or not, eg by checking if the value is undefined
. But there
are options to the compiler to instead decode to defaults, in which
case you lose the ability to see whether a field is present or not.
The options are defaults_for_omitted_optionals
and
type_defaults_for_omitted_optionals
, for decoding to default=<x>
values, or to type-specific defaults respectively.
It works this way:
message o1 {
optional uint32 a = 1 [default=33];
optional uint32 b = 2; // the type-specific default is 0
}
Given binary data <<>>
, that is, neither field a
nor b
is present,
then the call decode_msg(Input, o1)
results in:
#o1{a=undefined, b=undefined} % None of the options
#o1{a=33, b=undefined} % with option defaults_for_omitted_optionals
#o1{a=33, b=0} % with both defaults_for_omitted_optionals
% and type_defaults_for_omitted_optionals
#o1{a=0, b=0} % with only type_defaults_for_omitted_optionals
The last of the alternatives is perhaps not very useful, but still possible, and implemented for completeness.
For proto3 syntax
For proto3, there is neither required
nor default=<x>
for fields. Instead, unless marked with optional
, all scalar fields,
strings and bytes are implicitly optional. On decoding, if such a field
is missing in the binary to decode, they always decode to the type-specific
default value.
On encoding, such fields are only included in the resulting encoded
binary if they have a value different from the type-specific default
value. Even though all fields are implicitly optional, one could also
say that on a conceptual level, all such fields always have a value.
At decoding, it is not possible to determine whether at encoding,
a value was present---with a type-specific value---or not.
Fields marked as optional
are essentially represented the same way
as in proto2 syntax; in a record the field has the value undefined
if it is not set, and in maps the field is not present if it is not set.
A recommendation I've seen for if you need detection of "missing" data,
is to define has_<field>
boolean fields and set them appropriately.
Another alternative could be to use the well-known wrapper messages.
Fields that are sub-messages and oneof fields, do not have any type-specific default. A sub-message field that was not set encodes differently from a sub-message field set to the sub-message, and it decodes differently. This holds even when the sub-message has no fields. It works a bit similarly for oneof fields. Either none of the alternative oneof fields is set, or one of them is. The encoded format is different, and on decoding it is possible to tell a difference.
Features of gpb
-
Parses protocol buffer definition files and can generate:
- record definitions, one record for each message
- erlang code for encoding/decoding the messages to/from binaries
-
Features of the protocol buffer definition files: gpb supports:
- message definitions (also messages in messages)
- scalar types
- importing other proto files
- nested types
- message extensions
- the
packed
anddefault
options for fields - the
allow_alias
enum option (treated as if it is always set true) - generating metadata information
- package namespacing (optional)
oneof
(introduced in protobuf 2.6.0)map<_,_>
(introduced in protobuf 3.0.0)- proto3 support:
- syntax and general semantics
- import of well-known types
- Callback functions can be specified for automatically translating google.protobuf.Any messages
- groups
- JSON mapping is supported, see the json (-json) option(s)
gpb reads but ignores:
- options other than
packed
ordefault
- custom options
gpb does not support:
- aggregate custom options introduced in protobuf 2.4.0
- rpc
- JSON limitations:
- does not handle the special JSON mapping of the google.protobuf.Any wellknown
-
Characteristics of gpb:
- Skipping over unknown message fields or groups, when decoding, is supported
- Merging of messages, also recursive merging, is supported
- Gpb can optionally generate code for verification of values during encoding this makes it easy to catch e.g integers out of range, or values of the wrong type.
- Gpb can optionally or conditionally copy the contents of
bytes
fields, in order to let the runtime system free the larger message binary. - Gpb can optionally make use of the
package
attribute by prepending the name of the package to every contained message type (if defined), which is useful to avoid name clashes of message types across packages. See theuse_packages
option or the-pkgs
command line option. - The generated encode/decoder has no run-time dependency to gpb,
but there is normally a compile-time dependency for the generated
code: to the
#field{}
record in gpb.hrl for theget_msg_defs
function, but it is possible to avoid this dependency by using the also thedefs_as_proplists
or-pldefs
option. - Gpb can generate code both to files and to binaries.
- Proto input files are expected to be UTF-8, but the file reader will fall back to decode the files as latin1 in UTF-8 decode errors, for backwards compatibility and behaviour that most closely emulates what Google protobuf does.
-
Introspection
gpb generates some functions for examining messages, enums and services:
get_msg_defs()
(orget_proto_defs()
ifintrospect_get_proto_defs
is set),get_msg_names()
,get_enum_names()
find_msg_def(MsgName)
andfetch_msg_def(MsgName)
find_enum_def(MsgName)
andfetch_enum_def(MsgName)
enum_symbol_by_value(EnumName, Value)
,enum_symbol_by_value_<EnumName>(Value)
,enum_value_by_symbol(EnumName, Enum)
andenum_value_by_symbol_<EnumName>(Enum)
get_service_names()
,get_service_def(ServiceName)
,get_rpc_names(ServiceName)
find_rpc_def(ServiceName, RpcName)
,fetch_rpc_def(ServiceName, RpcName)
There are also some functions for translating between fully qualified names and internal names. These take any renaming options into consideration. They may be useful for instance with grpc reflection.
fqbin_to_service_name(<<"Package.ServiceName">>)
andservice_name_to_fqbin('ServiceName')
fqbins_to_service_and_rpc_name(<<"Package.ServiceName">>, <<"RpcName">>)
andservice_and_rpc_name_to_fqbins('ServiceName', 'RpcName')
fqbin_to_msg_name(<<"Package.MsgName">>)
andmsg_name_to_fqbin('MsgName')
fqbin_to_enum_name(<<"Package.EnumName">>)
andenum_name_to_fqbin('EnumName')
There are also some functions for querying what proto a type belongs to. Each type belongs to some
"name"
which is a string, usually the file name, sans extension, for example"name"
if the proto file was"name.proto"
.get_all_proto_names() -> ["name1", ...]
get_msg_containment("name") -> ['MsgName1', ...]
get_pkg_containment("name") -> 'Package'
get_service_containment("name") -> ['Service1', ...]
get_rpc_containment("name") -> [{'Service1', 'RpcName1}, ...]
get_proto_by_msg_name_as_fqbin(<<"Package.MsgName">>) -> "name"
get_proto_by_enum_name_as_fqbin(<<"Package.EnumName">>) -> "name"
get_protos_by_pkg_name_as_fqbin(<<"Package">>) -> ["name1", ...]
There are also some version information functions:
gpb:version_as_string()
,gpb:version_as_list()
andgpb:version_source()
GeneratedCode:version_as_string()
,GeneratedCode:version_as_list()
andGeneratedCode:version_source()
?gpb_version
(in gpb_version.hrl)?'GeneratedCode_gpb_version'
(in GeneratedCode.hrl)
The gpb can also generate a self-description of the proto file. The self-description is a description of the proto file, encoded to a binary using the descriptor.proto that comes with the Google protocol buffers library. Note that such an encoded self-descriptions won't be byte-by-byte identical to what the Google protocol buffers compiler will generate for the same proto, but should be roughly equivalent.
-
Erroneously encoded protobuf messages and fields will generally cause the decoder to crash. Examples of such erroneous encodings are:
- varints with too many bits
- strings, bytes, sub messages or packed repeated fields, where the encoded length is longer than the remaining binary
-
Maps
Gpb can generate encoders/decoders for maps.
The option
maps_unset_optional
can be used to specify behavior for non-present optional fields: whether they are omitted from maps, or whether they are present, but have the valueundefined
like for records. -
Reporting of errors in .proto files
Gpb is not very good at error reporting, especially referencing errors, such as references to messages that are not defined. You might want to first verify with
protoc
that the .proto files are valid before feeding them to gpb.
Interaction with rebar
For info on how to use gpb with rebar3, see https://rebar3.org/docs/configuration/plugins/#protocol-buffers
Compatibility with rebar2
In rebar there is support for gpb since version 2.6.0. See the proto compiler section of rebar.sample.config file at https://github.com/rebar/rebar/blob/master/rebar.config.sample
For older versions of rebar---prior to 2.6.0---the text below outlines how to proceed:
Place the .proto files for instance in a proto/
subdirectory.
Any subdirectory, other than src/, is fine, since rebar will try to
use another protobuf compiler for any .proto it finds in the src/
subdirectory. Here are some some lines for the rebar.config
file:
%% -*- erlang -*-
{pre_hooks,
[{compile, "mkdir -p include"}, %% ensure the include dir exists
{compile,
"/path/to/gpb/bin/protoc-erl -I`pwd`/proto"
"-o-erl src -o-hrl include `pwd`/proto/*.proto"
}]}.
{post_hooks,
[{clean,
"bash -c 'for f in proto/*.proto; "
"do "
" rm -f src/$(basename $f .proto).erl; "
" rm -f include/$(basename $f .proto).hrl; "
"done'"}
]}.
{erl_opts, [{i, "/path/to/gpb/include"}]}.
Version numbering
The gpb version number is fetched from the git latest git tag matching N.M where N and M are integers. This version is inserted into the gpb.app file as well as into the include/gpb_version.hrl. The version is the result of the command
git describe --always --tags --match '[0-9]*.[0-9]*'
Thus, to create a new version of gpb, the single source from where this version is fetched, is the git tag. (If you are importing gpb into another version control system than git, or using another build tool than rebar, you might have to adapt rebar.config and src/gpb.app.src accordingly. See also the section below about building outside of a git work tree for info on exporting gpb from git.)
The version number from the git describe
command above will look like
<x>.<y>.<z>
(on master on Github)<x>.<y>.<z>-<n>-g<sha>
(on branches or between releases)
The version number on the master branch of the gpb on Github is
intended to always be only integers with dots, in order to be
compatible with reltool. In other words, each push to Github's master
branch is considered a release, and the version number is bumped.
To ensure this, there is a pre-push
git hook and two scripts,
install-git-hooks
and tag-next-minor-vsn
, in the helpers
subdirectory. The ChangeLog file will not necessarily reflect all
minor version bumps, only important updates.
Places to update when making a new version:
- Write about the changes in the ChangeLog file, if it is a non-minor version bump.
- Tag it in git
Building outside of a git work tree
The gpb build process expects a (non-shallow) git work tree, with tags, to get the version numbering right, as described in the Version numbering section, but it is also possible to build outside of git. To do that, you have two options:
- set the version manually by creating a file,
gpb.vsn
, with the version on the first line - or create a versioned archive, using the
helpers/mk-versioned-archive
script, then unpack the archive and build inside it.
If you create the versioned archive in a git work tree, the version
will be set automatically, otherwise you will need to specify it
manually. Run mk-versioned-archive --help
for info on what options
to use.
When downloading from Github, the gpb-<x.y.z>.tar.gz archives have been created using the mk-versioned-archive script, so it is possible to just unpack and build directly.
If you use Github's automatic Source code zip or tar.gz archives,
you will need to either create a gpb.vsn
file as described above,
or re-create a versioned archive using the mk-versioned-archive
script and the --override-version=<x>
option (or possibly the
or the --override-version-from-cwd-path
option if the directory name
contains a proper version.)
Related projects
- rebar3_gpb_plugin for using gpb with rebar3
- exprotobuf for using gpb from Elixir
- enif_protobuf for a NIF encoder/decoder
- grpcbox, for creating grpc services (client and server)
- grpc and grpc_client for a grpc server and client
Contributing
Contributions are welcome, preferably as pull requests or git patches or git fetch requests. Here are some guide lines:
- Use only spaces for indentation, no tabs. Indentation is 4 spaces.
- The code must fit 80 columns
- Verify that the code and documentation compiles and that tests are ok:<br/>
rebar clean; rebar eunit && rebar doc
<br/> (if you are still on rebar2, you will need to run rebar compile before eunit) - If you add a feature, test cases are most welcome, so that the feature won't get lost in any future refactorization
- Use a git branch for your feature. This way, the git history will look better in case there is need to refetch.
- By submitting patches to this project, you agree to allow them to be redistributed under the project's license according to the normal forms and usages of the open-source community.
Version history
See the ChangeLog for details.
Major change in version 4.0.0:
The default value for the maps_unset_optional
option has changed
to omitted
, from present_undefined
This concerns only code generated
with the maps (-maps) options. Projects that already set this option
explicitly are not impacted. Projects that relied on the default to be
present_undefined
will need to set the option explicitly in order to
upgrade to 4.0.0.
For type specs, the default has changed to generate them when possible. The
option {type_specs,false}
(-no_type) can be used to avoid generating type
specs.