Awesome
This package is still under development. If you have any trouble running this code, please contact thomas.moreau.2010@gmail.com
DICOD
Package to run the experiments for the ICML paper DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding, ICML 2018, T. Moreau, L. Oudre, N. Vayatis.
Requirements
All the tests were done with python3.4.
This package depends on the python library numpy
, matplotlib
, scipy
, mpi4py
, joblib
and the libraries openMPI
and fftw3
.
They can be installed with
sudo apt install libopenmpi-dev fftw-dev
pip install numpy matplotlib scipy mpi4py joblib
To install the package, first build it with the utility script ./build
and then run pip install -e .
Usage
Figure 2 can be generated using
$ python main_dicod.py --met -K 25 -T 600 --timeout 7200 -d 10 --njobs 60 --hostfile hostfile --exp results
where hostfile is the configuration for the spawning of MPI processes.
host1 slots=32
host2 slots=8
...
Then the figures can be plotted using
$ python plot_dicod.py --met --dir save_exp/results