Home

Awesome

Stackprof

A sampling call-stack profiler for Ruby.

Inspired heavily by gperftools, and written as a replacement for perftools.rb.

Requirements

Getting Started

Install

In your Gemfile add:

gem 'stackprof'

Then run $ bundle install. Alternatively you can run $ gem install stackprof.

Run

in ruby:

StackProf.run(mode: :cpu, out: 'tmp/stackprof-cpu-myapp.dump') do
  #...
end

via rack:

use StackProf::Middleware, enabled: true,
                           mode: :cpu,
                           interval: 1000,
                           save_every: 5

reporting:

$ stackprof tmp/stackprof-cpu-*.dump --text --limit 1
  ==================================
    Mode: cpu(1000)
    Samples: 60395 (1.09% miss rate)
    GC: 2851 (4.72%)
  ==================================
       TOTAL    (pct)     SAMPLES    (pct)     FRAME
        1660   (2.7%)        1595   (2.6%)     String#blank?

$ stackprof tmp/stackprof-cpu-*.dump --method 'String#blank?'
  String#blank? (gems/activesupport-2.3.14.github30/lib/active_support/core_ext/object/blank.rb:80)
    samples:  1595 self (2.6%)  /   1660 total (2.7%)
    callers:
       373  (   41.0%)  ApplicationHelper#current_user
       192  (   21.1%)  ApplicationHelper#current_repository
    callers:
       803  (   48.4%)  Object#present?
    code:
                                    |    80  |   def blank?
   1225    (2.0%) /  1225   (2.0%)  |    81  |     self !~ /[^[:space:]]/
                                    |    82  |   end

$ stackprof tmp/stackprof-cpu-*.dump --method 'Object#present?'
  Object#present? (gems/activesupport-2.3.14.github30/lib/active_support/core_ext/object/blank.rb:20)
    samples:    59 self (0.1%)  /    910 total (1.5%)
    callees (851 total):
       803  (   94.4%)  String#blank?
        32  (    3.8%)  Object#blank?
        16  (    1.9%)  NilClass#blank?
    code:
                                    |    20  |   def present?
    910    (1.5%) /    59   (0.1%)  |    21  |     !blank?
                                    |    22  |   end

For an experimental version of WebUI reporting of stackprof, see stackprof-webnav

To generate flamegraphs with Stackprof, additional data must be collected using the raw: true flag. Once you've collected results with this flag enabled, generate a flamegraph with:

$ stackprof --flamegraph tmp/stackprof-cpu-myapp.dump > tmp/flamegraph

After the flamegraph has been generated, you can generate a viewer command with:

$ stackprof --flamegraph-viewer=tmp/flamegraph

The --flamegraph-viewer command will output the exact shell command you need to run in order to open the tmp/flamegraph you generated with the built-in stackprof flamegraph viewer:

Flamegraph Viewer

Alternatively, you can generate a flamegraph that uses d3-flame-graph:

$ stackprof --d3-flamegraph tmp/stackprof-cpu-myapp.dump > flamegraph.html

And just open the result by your browser.

Sampling

Four sampling modes are supported:

Samplers have a tuneable interval which can be used to reduce overhead or increase granularity:

StackProf.run(mode: :wall, out: 'tmp/stackprof.dump', interval: 1000) do
  #...
end
StackProf.run(mode: :cpu, out: 'tmp/stackprof.dump', interval: 1000) do
  #...
end
StackProf.run(mode: :object, out: 'tmp/stackprof.dump', interval: 1) do
  #...
end

By default, samples taken during garbage collection will show as garbage collection frames including both mark and sweep phases. For longer traces, these can leave gaps in a flamegraph that are hard to follow. They can be disabled by setting the ignore_gc option to true. Garbage collection time will still be present in the profile but not explicitly marked with its own frame.

Samples are taken using a combination of three new C-APIs in ruby 2.1:

Aggregation

Each sample consists of N stack frames, where a frame looks something like MyClass#method or block in MySingleton.method. For each of these frames in the sample, the profiler collects a few pieces of metadata:

The aggregation algorithm is roughly equivalent to the following pseudo code:

trap('PROF') do
  top, *rest = caller

  top.samples += 1
  top.lines[top.lineno] += 1
  top.total_samples += 1

  prev = top
  rest.each do |frame|
    frame.edges[prev] += 1
    frame.total_samples += 1
    prev = frame
  end
end

This technique builds up an incremental call graph from the samples. On any given frame, the sum of the outbound edge weights is equal to total samples collected on that frame (frame.total_samples == frame.edges.values.sum).

Reporting

Multiple reporting modes are supported:

StackProf::Report.new(data).print_text

     TOTAL    (pct)     SAMPLES    (pct)     FRAME
        91  (48.4%)          91  (48.4%)     A#pow
        58  (30.9%)          58  (30.9%)     A.newobj
        34  (18.1%)          34  (18.1%)     block in A#math
       188 (100.0%)           3   (1.6%)     block (2 levels) in <main>
       185  (98.4%)           1   (0.5%)     A#initialize
        35  (18.6%)           1   (0.5%)     A#math
       188 (100.0%)           0   (0.0%)     <main>
       188 (100.0%)           0   (0.0%)     block in <main>
       188 (100.0%)           0   (0.0%)     <main>

StackProf::Report.new(data).print_graphviz

digraph profile {
  70346498324780 [size=23.5531914893617] [fontsize=23.5531914893617] [shape=box] [label="A#pow\n91 (48.4%)\r"];
  70346498324680 [size=18.638297872340424] [fontsize=18.638297872340424] [shape=box] [label="A.newobj\n58 (30.9%)\r"];
  70346498324480 [size=15.063829787234042] [fontsize=15.063829787234042] [shape=box] [label="block in A#math\n34 (18.1%)\r"];
  70346498324220 [size=10.446808510638299] [fontsize=10.446808510638299] [shape=box] [label="block (2 levels) in <main>\n3 (1.6%)\rof 188 (100.0%)\r"];
  70346498324220 -> 70346498324900 [label="185"];
  70346498324900 [size=10.148936170212766] [fontsize=10.148936170212766] [shape=box] [label="A#initialize\n1 (0.5%)\rof 185 (98.4%)\r"];
  70346498324900 -> 70346498324780 [label="91"];
  70346498324900 -> 70346498324680 [label="58"];
  70346498324900 -> 70346498324580 [label="35"];
  70346498324580 [size=10.148936170212766] [fontsize=10.148936170212766] [shape=box] [label="A#math\n1 (0.5%)\rof 35 (18.6%)\r"];
  70346498324580 -> 70346498324480 [label="34"];
  70346497983360 [size=10.0] [fontsize=10.0] [shape=box] [label="<main>\n0 (0.0%)\rof 188 (100.0%)\r"];
  70346497983360 -> 70346498325080 [label="188"];
  70346498324300 [size=10.0] [fontsize=10.0] [shape=box] [label="block in <main>\n0 (0.0%)\rof 188 (100.0%)\r"];
  70346498324300 -> 70346498324220 [label="188"];
  70346498325080 [size=10.0] [fontsize=10.0] [shape=box] [label="<main>\n0 (0.0%)\rof 188 (100.0%)\r"];
  70346498325080 -> 70346498324300 [label="188"];
}

StackProf::Report.new(data).print_method(/pow|newobj|math/)

A#pow (/Users/tmm1/code/stackprof/sample.rb:11)
                         |    11  |   def pow
   91  (48.4% / 100.0%)  |    12  |     2 ** 100
                         |    13  |   end
A.newobj (/Users/tmm1/code/stackprof/sample.rb:15)
                         |    15  |   def self.newobj
   33  (17.6% /  56.9%)  |    16  |     Object.new
   25  (13.3% /  43.1%)  |    17  |     Object.new
                         |    18  |   end
A#math (/Users/tmm1/code/stackprof/sample.rb:20)
                         |    20  |   def math
    1   (0.5% / 100.0%)  |    21  |     2.times do
                         |    22  |       2 + 3 * 4 ^ 5 / 6
block in A#math (/Users/tmm1/code/stackprof/sample.rb:21)
                         |    21  |     2.times do
   34  (18.1% / 100.0%)  |    22  |       2 + 3 * 4 ^ 5 / 6
                         |    23  |     end

Usage

The profiler is compiled as a C-extension and exposes a simple api: StackProf.run(mode: [:cpu|:wall|:object]). The run method takes a block of code and returns a profile as a simple hash.

# sample after every 1ms of cpu activity
profile = StackProf.run(mode: :cpu, interval: 1000) do
  MyCode.execute
end

This profile data structure is part of the public API, and is intended to be saved (as json/marshal for example) for later processing. The reports above can be generated by passing this structure into StackProf::Report.new.

The format itself is very simple. It contains a header and a list of frames. Each frame has a unique ID and identifying information such as its name, file, and line. The frame also contains sampling data, including per-line samples, and a list of relationships to other frames represented as weighted edges.

{:version=>1.0,
 :mode=>:cpu,
 :inteval=>1000,
 :samples=>188,
 :missed_samples=>0,
 :frames=>
  {70346498324780=>
    {:name=>"A#pow",
     :file=>"/Users/tmm1/code/stackprof/sample.rb",
     :line=>11,
     :total_samples=>91,
     :samples=>91,
     :lines=>{12=>91}},
   70346498324900=>
    {:name=>"A#initialize",
     :file=>"/Users/tmm1/code/stackprof/sample.rb",
     :line=>5,
     :total_samples=>185,
     :samples=>1,
     :edges=>{70346498324780=>91, 70346498324680=>58, 70346498324580=>35},
     :lines=>{8=>1}},

Above, A#pow was involved in 91 samples, and in all cases it was at the top of the stack on line 12.

A#initialize was in 185 samples, but it was at the top of the stack in only 1 sample. The rest of the samples are divided up between its callee edges. All 91 calls to A#pow came from A#initialize, as seen by the edge numbered 70346498324780.

Advanced usage

The profiler can be started and stopped manually. Results are accumulated until retrieval, across multiple start/stop invocations.

StackProf.running? # => false
StackProf.start(mode: :cpu)
StackProf.running? # => true
StackProf.stop
StackProf.results('/tmp/some.file')

All options

StackProf.run accepts an options hash. Currently, the following options are recognized:

OptionMeaning
modeMode of sampling: :cpu, :wall, :object, or :custom c.f.
outThe target file, which will be overwritten
intervalMode-relative sample rate c.f.
ignore_gcIgnore garbage collection frames
aggregateDefaults: true - if false disables aggregation
rawDefaults false - if true collects the extra data required by the --flamegraph and --stackcollapse report types
metadataDefaults to {}. Must be a Hash. metadata associated with this profile
save_every(Rack middleware only) write the target file after this many requests

Todo