Home

Awesome

Actions Status

NAME

Algorithm::LibSVM - A Raku bindings for libsvm

SYNOPSIS

EXAMPLE 1

use Algorithm::LibSVM;
use Algorithm::LibSVM::Parameter;
use Algorithm::LibSVM::Problem;
use Algorithm::LibSVM::Model;

my $libsvm = Algorithm::LibSVM.new;
my Algorithm::LibSVM::Parameter $parameter .= new(svm-type => C_SVC,
                                                  kernel-type => RBF);
# heart_scale is here: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/heart_scale
my Algorithm::LibSVM::Problem $problem = Algorithm::LibSVM::Problem.from-file('heart_scale');
my @r = $libsvm.cross-validation($problem, $parameter, 10);
$libsvm.evaluate($problem.y, @r).say; # {acc => 81.1111111111111, mse => 0.755555555555556, scc => 1.01157627463546}

EXAMPLE 2

use Algorithm::LibSVM;
use Algorithm::LibSVM::Parameter;
use Algorithm::LibSVM::Problem;
use Algorithm::LibSVM::Model;

sub gen-train {
  my $max-x = 1;
  my $min-x = -1;
  my $max-y = 1;
  my $min-y = -1;
  my @x;
  my @y;
  do for ^300 {
      my $x = $min-x + rand * ($max-x - $min-x);
      my $y = $min-y + rand * ($max-y - $min-y);

      my $label = do given $x, $y {
          when ($x - 0.5) ** 2 + ($y - 0.5) ** 2 <= 0.2 {
              1
          }
          when ($x - -0.5) ** 2 + ($y - -0.5) ** 2 <= 0.2 {
              -1
          }
          default { Nil }
      }
      if $label.defined {
          @y.push: $label;
          @x.push: [$x, $y];
      }
  }
  (@x, @y)
}

my (@train-x, @train-y) := gen-train;
my @test-x = 1 => 0.5e0, 2 => 0.5e0;
my $libsvm = Algorithm::LibSVM.new;
my Algorithm::LibSVM::Parameter $parameter .= new(svm-type => C_SVC,
                                                  kernel-type => LINEAR);
my Algorithm::LibSVM::Problem $problem = Algorithm::LibSVM::Problem.from-matrix(@train-x, @train-y);
my $model = $libsvm.train($problem, $parameter);
say $model.predict(features => @test-x)<label> # 1

DESCRIPTION

Algorithm::LibSVM is a Raku bindings for libsvm.

METHODS

cross-validation

Defined as:

method cross-validation(Algorithm::LibSVM::Problem $problem, Algorithm::LibSVM::Parameter $param, Int $nr-fold --> List)

Conducts $nr-fold-fold cross validation and returns predicted values.

train

Defined as:

method train(Algorithm::LibSVM::Problem $problem, Algorithm::LibSVM::Parameter $param --> Algorithm::LibSVM::Model)

Trains a SVM model.

DEPRECATED load-problem

Defined as:

multi method load-problem(\lines --> Algorithm::LibSVM::Problem)
multi method load-problem(Str $filename --> Algorithm::LibSVM::Problem)

Loads libsvm-format data.

load-model

Defined as:

method load-model(Str $filename --> Algorithm::LibSVM::Model)

Loads libsvm model.

evaluate

Defined as:

method evaluate(@true-values, @predicted-values --> Hash)

Evaluates the performance of the three metrics (i.e. accuracy, mean squared error and squared correlation coefficient)

nr-feature

Defined as:

method nr-feature(--> Int:D)

Returns the maximum index of all the features.

ROUTINES

parse-libsvmformat

Defined as:

sub parse-libsvmformat(Str $text --> List) is export

Is a helper routine for handling libsvm-format text.

CAUTION

DON'T USE PRECOMPUTED KERNEL

As a workaround for RT130187, I applied the patch programs (e.g. src/3.22/svm.cpp.patch) for the sake of disabling random access of the problematic array.

Sadly to say, those patches drastically increase the complexity of using PRECOMPUTED kernel.

SEE ALSO

AUTHOR

titsuki titsuki@cpan.org

COPYRIGHT AND LICENSE

Copyright 2016 titsuki

This library is free software; you can redistribute it and/or modify it under the terms of the MIT License.

libsvm ( https://github.com/cjlin1/libsvm ) by Chih-Chung Chang and Chih-Jen Lin is licensed under the BSD 3-Clause License.