Awesome
groovy-common-extensions
Lets you add things I find commonly useful to the Groovy language via the extension system.
Obviously requires at least Groovy 2.0.5 (so that the extension system exists)
Usage:
@Grab( 'com.bloidonia:groovy-common-extensions:0.7.1' )
and the following methods will be available to you:
Current extensions:
addImplicitConversion
(thanks MartyNeal)
static void addImplicitConversion(Class self, Class to, Closure conversion)
Lets you overload the asType
call in Groovy, so you can do:
String.addImplicitConversion(Integer) { it.length() }
assert ("foo" as Integer) == 3
clamp
static <T extends Comparable> T clamp( T self, T lower, T upper )
static <T extends Comparable> T clamp( T self, Range range ) {
static Range clamp( Range self, Range range ) {
Lets you do:
println 10.clamp( 1, 15 ) // 10
println 10.clamp( 1, 5 ) // 5
println 10.clamp( 12, 20 ) // 12
println 10.clamp( 12..20 ) // 12
println (3..20).clamp( 2..9 ) // 3..9
Works with any comparable:
println 'a'.clamp( 'b', 'z' ) // b
Multi closure sort
static Collection sort( Collection self, boolean mutate, Closure... closures )
Lets you do (example from here):
List list = [
[id:0, firstName: 'Sachin', lastName: 'Tendulkar', age: 40 ],
[id:1, firstName: 'Sachin', lastName: 'Tendulkar', age: 103 ],
[id:2, firstName: 'Ajay', lastName: 'Tendulkar', age: 48 ],
[id:3, firstName: 'Virendra', lastName: 'Sehwag', age: 5 ],
[id:4, firstName: 'Virendra', lastName: 'Sehwag', age: 50 ],
[id:5, firstName: 'Sachin', lastName: 'Nayyar', age: 15 ]
]
// returns [2, 5, 0, 1, 3, 4]
list.sort( false, { it.firstName }, { it.lastName }, { it.age } )*.id
Negative index take
(with Lists)
static List take( List self, int n )
Lets you safely grab the end of a list, as you can with take
for the front
println [1,2,3,4].take( -2 ) // [3,4]
If you pass a positive number, it delegates to the original DGM.take
method
println [1,2,3,4].take( 2 ) // [1,2]
withClosable
static Object withClosable( Object self, Closure c ) {
Executes the closure (passing the delegate), and when finished it calls
close
on the delegate if the method exists. If it doesn't exist, it does
nothing.
Examples:
// Create a FileWriter, close it when finished
new FileWriter( '/tmp/d.txt' ).withClosable {
it.println 'd'
}
// Create 3 FileWriters, close them all when done, and return
// Closure result ('tim') to the rslt var
def rslt = [ '/tmp/a.txt', '/tmp/b.txt', '/tmp/c.txt' ].collect {
new FileWriter( it )
}.withClosable { a, b, c ->
a.println 'a'
b.println 'b'
c.println 'c'
'tim'
}
assert rslt == 'tim'
// This works, but does nothing
'tim'.withClosable {
println it
}
tap
static Object tap( Object self, Closure c ) {
Taken from Ruby, the tap
method executes the closure using the object as the
delegate - internally, it just calls self.with c
and then it returns self
.
This allows you to tap
into a method chain:
def m = (1..10) .tap { println "original ${it}" }
.findAll { it % 2 == 0 } .tap { println "evens ${it}" }
.collect { it * it } .tap { println "squares ${it}" }
// prints:
// original [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
// evens [2, 4, 6, 8, 10]
// squares [4, 16, 36, 64, 100]
// and returns:
assert m == [4, 16, 36, 64, 100]
zip
and unzip
static File zip ( File self )
static File zip ( File self, File destination )
static File zip ( File self, Closure<Boolean> filter )
static File zip ( File self, File destination, Closure<Boolean> filter )
static Collection<File> unzip ( File self )
static Collection<File> unzip ( File self, File destination )
static Collection<File> unzip ( File self, Closure<Boolean> filter )
static Collection<File> unzip ( File self, File destination, Closure<Boolean> filter )
Zips/unzips a single file or directory tree. If no destination is given, the target directory for the generated
zip or extracted file(s) will be relative to the current file location. If a filter is specified, then each file is passed to the closure before it is handled. If the closure returns false
, the file is skipped.
Examples:
// zips the directory tree and creates a 'tmp.zip' file in '/var'
File zipFile = new File('/var/tmp/').zip()
// zips all *.txt files in the directory tree and creates a 'tmp.zip' file in '/var'
File zipFile = new File('/var/tmp/').zip {
it.name.endsWith '.txt'
}
// extracts the files to '/var/'
Collection<File> extractedFiles = new File('/var/tmp.zip').unzip()
// zips the directory content and moves 'tmp.zip' to '/home/bill'
File zipFile = new File('/var/tmp/').zip(new File('/home/bill/tmp.zip')
// extracts the files to '/home/bill/'
Collection<File> extractedFiles = new File('/var/tmp.zip').unzip(new File('/home/bill'))
toMap
functionality for NodeChild
static Map toMap( NodeChild self )
static Map toMap( NodeChild self, String childKey )
Converts a NodeChild
and its children to a Map
. Child nodes are by default put inside a
key _children
, though this can be changed using the optional childKey
parameter (if your
xml contains _children
nodes for example)
Examples:
def xmlstr = '<dan value="a"><subnode><item value="a"/></subnode></dan>'
def xml = new XmlSlurper().parseText( xmlstr )
def map = xml.toMap()
assert map == [dan:[value:'a',_children:[[subnode:[_children:[[item:[value:'a']]]]]]]]
And with a childKey
:
def xmlstr = '<dan value="a"><subnode><item value="a"/></subnode></dan>'
def xml = new XmlSlurper().parseText( xmlstr )
def map = xml.toMap( 'kids' )
assert map == [dan:[value:'a',kids:[[subnode:[kids:[[item:[value:'a']]]]]]]]
rand
functionality for List
and Iterator
static <T> T rand( List<T> self )
static <T> List<T> rand( List<T> self, int n ) {
static <T> List<T> rand( List<T> self, int n, boolean allowDuplicates ) {
static <T> List<T> rand( List<T> self, int n, boolean allowDuplicates, Random r ) {
static <T> T rand( Iterator<T> self )
static <T> List<T> rand( Iterator<T> self, int n )
static <T> List<T> rand( Iterator<T> self, int n, boolean allowDuplicates )
static <T> List<T> rand( Iterator<T> self, int n, boolean allowDuplicates, Random r )
Randomly select an element from a list or iterator.
- The first form returns a single random element from the List or Iterator.
- The second form returns a
List
ofn
random elements from the List or Iterator (duplicates allowed) - The third form allows you to specify no duplicates (by passing
false
as the third parameter) and returns aList
- The fourth form also returns a
List
and also allows you to set the Random object to be used in the processing. This allows tests to specify a seed so reproducability is assured.
The returned list is of the same class as the input.
If you ask for 0
items, you get an empty list returned.
If you ask for more unique elements than there are items in the list, this throws an IllegalArgumentException
When rand
is called on an Iterator, the entire Iterator is consumed until hasNext() is false and the returned elements are chosen from all the items iterated over with uniform probability.
Example:
def list = [1, 2, 3, 4, 5]
def randomInt = list.rand()
assert randomInt in list
Extended merge
functionality for ConfigObject
static ConfigObject merge( Map self, Map other, Boolean sourcePrecedence )
Boolean sourcePrecedence
specifies that the source ConfigObject
should not have it's existing key/value
pair overwritten by a merge with another ConfigObject
Example:
def config1 = """
config {
a = 1
b = 2
c = 3
}
"""
def config2 = """
config {
a = 2
b = 2
}
"""
def configObject1 = new ConfigSlurper().parse(config1)
def configObject2 = new ConfigSlurper().parse(config2)
def merge = configObject2.merge(configObject1)
def configObject3 = new ConfigSlurper().parse(config1)
def configObject4 = new ConfigSlurper().parse(config2)
def mergeWithSourcePrecedence = configObject4.merge(configObject3,true)
// overwrote config2's value
assert merge.config.a == 1
// preserved config2's value
assert mergeWithSourcePrecedence.config.a == 2
// config2 inherited value from config1
assert merge.config.c == 3
// config2 inherited from config1
assert mergeWithSourcePrecedence.config.c == merge.config.c
Transposed Iterator for List of Lists
static <T> Iterator<T> transposedIterator( List<List<T>> lists )
static <T> Iterator<T> transposedIterator( List<List<T>> lists, List<Integer> amounts )
Given a list of lists, ie:
def a = [ 1..4, 'a'..'e' ]
you can (with Groovy) call a.transpose()
ie:
assert a.transpose() == [ [ 1,'a' ], [ 2,'b' ], [ 3,'c' ], [ 4,'d' ] ]
This new functionality returns an iterator, and you can specify how many reseults of each list to expect. So:
// We need the collect as we want the values from the Iterator
def b = a.transposedIterator().collect()
// Note we get the extraneous 'e' that is lost by transpose()
assert b == [ 1, 'a', 2, 'b', 3, 'c', 4, 'd', 'e' ]
And (passing a list of amounts):
// So we want 1 element of list 1 followed by 2 of list 2 (repeated till exhaustion)
def c = a.transposedIterator( [ 1, 2 ] ).collect()
// Note we run out of list 2 after the 'e', so just get the last 4 from list 1
assert c == [ 1, 'a', 'b', 2, 'c', 'd', 3, 'e', 4 ]
Averages for collection of Numbers
static <V extends Number> AverageStats<V> average( Collection<V> collection )
Given a collection of Numbers, ie:
def a = 1..10
We can get the mean
, median
, variance
and stdDev
wrapped in an Immutable AverageStats
class by simply calling:
def stats = a.average()
assert stats.mean == 5.5
assert stats.median == 5.5
assert stats.variance == 8.25
assert String.format( '%.5f', stats.stdDev ) == '2.87228'
This is useful when we are assuming a collection of numbers is the same based on it's superficial criteria, ie given:
def a = [1] * 50 + [100] * 50
def b = 1..100
It is easy using simple (bogus) stats to say they are very similar:
// Both print: "MIN 1 MAX 100 SIZE 100 MEAN 50.5"
println "MIN ${a.min()} MAX ${a.max()} SIZE ${a.size()} MEAN ${a.sum() / 100}"
println "MIN ${b.min()} MAX ${b.max()} SIZE ${b.size()} MEAN ${b.sum() / 100}"
However, the standard deviation shows that they are very different sequences of numbers:
// prints: "AverageStats( mean:50.5, median:50.5, variance:2450.25, stdDev:49.5 )"
println a.average()
// prints: "AverageStats( mean:50.5, median:50.5, variance:833.25, stdDev:28.86607004772212 )"
println b.average()
byte[].hexdump()
static void hexdump( byte[] self, Writer writer, int idx, int len )
static void hexdump( byte[] self, int idx, int len )
static void hexdump( byte[] self, Writer writer, int idx )
static void hexdump( byte[] self, int idx )
static void hexdump( byte[] self, Writer writer )
static void hexdump( byte[] self )
Dumps a byte array out as hex in a readable form. You can also pass a Writer
to print to this rather
than System.out
(the default)
ie: calling:
String output = new StringWriter().with { w ->
'Hello and welcome to Groovy'.bytes.hexdump( w )
w.toString()
}
Writes the following to output
:
+--------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+----------+--------------------------------------------------+------------------+
| 00000000 | 48 65 6c 6c 6f 20 61 6e 64 20 77 65 6c 63 6f 6d | Hello and welcom |
| 00000010 | 65 20 74 6f 20 47 72 6f 6f 76 79 | e to Groovy |
+----------+--------------------------------------------------+------------------+
String.toXml
static GPathResult toXml( String self ) {
static GPathResult toXml( String self, boolean validating, boolean namespaceAware)
static GPathResult toXml( String self, boolean validating, boolean namespaceAware, boolean allowDocTypeDeclaration)
static GPathResult toXml( String self, SAXParser parser)
static GPathResult toXml( String self, XMLReader reader)
Will pass any String through XmlSlurper
with the specified constructor parameters, ie:
assert '<xml><name>Tim</name></xml>'.toXml().name == 'Tim'
String.toConfig
static ConfigObject toConfig( String self ) {
Example: assert config1.toConfig().config.a==1
String.toJson
static Object toJson( String self ) {
Example: assert '{"xml":{"name":"Tim"}}'.toJson().xml.name == 'Tim'