Home

Awesome

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation.

framework

Prerequisites:

Dataset:

Training:

  1. Partial Domain Adaptation (PDA) on the Office-Home dataset [Art(s=0) -> Clipart(t=1)]
    python run_partial.py --s 0 --t 1 --dset office_home --net ResNet50 --cot_weight 1. --output run1 --gpu_id 0
    
  2. Partial Domain Adaptation (PDA) on the Office dataset [Amazon(s=0) -> DSLR(t=1)]
    python run_partial.py --s 0 --t 1 --dset office --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0
    python run_partial.py --s 0 --t 1 --dset office --net VGG16 --cot_weight 5. --output run1 --gpu_id 0
    
  3. Partial Domain Adaptation (PDA) on the ImageNet-Caltech dataset [ImageNet(s=0) -> Caltech(t=1)]
    python run_partial.py --s 0 --t 1 --dset imagenet_caltech --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0
    

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{liang2020baus,
    title={A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation},
    author={Liang, Jian, and Wang, Yunbo, and Hu, Dapeng, and He, Ran and Feng, Jiashi},
    booktitle={European Conference on Computer Vision (ECCV)},
    pages={xx-xx},
    month = {August},
    year={2020}
}

Acknowledgement

Some parts of this project are built based on the following open-source implementation

Contact