Home

Awesome

THUCTC: 一个高效的中文文本分类工具

目录

项目介绍

THUCTC(THU Chinese Text Classification)是由清华大学自然语言处理实验室推出的中文文本分类工具包,能够自动高效地实现用户自定义的文本分类语料的训练、评测、分类功能。文本分类通常包括特征选取、特征降维、分类模型学习三个步骤。如何选取合适的文本特征并进行降维,是中文文本分类的挑战性问题。我组根据多年在中文文本分类的研究经验,在THUCTC中选取二字串bigram作为特征单元,特征降维方法为Chi-square,权重计算方法为tfidf,分类模型使用的是LibSVM或LibLinear。THUCTC对于开放领域的长文本具有良好的普适性,不依赖于任何中文分词工具的性能,具有准确率高、测试速度快的优点。

使用方法

我们提供了两种方式运行工具包:

  1. 使用java开发工具,例如eclipse,将包括lib\THUCTC_java_v1.jar在内的lib文件夹下的包导入自己的工程中,仿照Demo.java程序调用函数即可。

  2. 使用根目录下的THUCTC_java_v1_run.jar运行工具包。

    使用命令 java -jar THUCTC_java_v1.jar + 程序参数

运行参数

样例程序

我们随工具包提供了一个调用THUCTC的样例代码Demo.java,其中实现了三种功能:

  1. 对文本进行训练并测试(runTrainAndTest);
  2. 读取已经训练好的模型,对文件进行分类(runLoadModelAndUse);
  3. 按照自己的想法添加训练文件,训练模型(AddFilesManuallyAndTrain);

BasicTextClassifier类接口说明

BasicTextClassifier 是系统的入口类,提供多种设置接口供使用者调用。利用此入口类可以从文件中读入别信息、设置训练语料路径、设置训练参数以及模型保存路径等。

其中常用的类成员函数包括:

中文文本分类数据集THUCNews

THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。我们在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。使用THUCTC工具包在此数据集上进行评测,准确率可以达到88.6%。

数据集请登录thuctc.thunlp.org网站填写个人信息进行下载。

测试结果

文本分类的性能评价有多种指标,其中主流的文本分类评价指标包括准确率、召回率、F-measure、微平均与宏平均等。其中,微平均指所有样本的测试结果的算数平均值,宏平均指所有类别的测试结果的算数平均值。我们的测试也主要对这些指标进行测试。 我们选取上节介绍的数据集进行测试,测试时使用以下参数组合(-d1 -d2),(-f):

注意事项

  1. 使用工具进行训练和测试时,训练语料和测试语料请严格按照如下格式放置:

    Train(Test)\
    	类别1\
    		1.txt
    		2.txt
    		3.txt
    		...
    		n.txt
    	类别2\
    		...
    	...
    	类别n\
    		...
    
  2. 该工具是通用的中文文本分类工具包,在针对中文文本进行分类时,选取二字串bigram作为特征单元是经过全面的实验分析和比较的。但在针对英文文本进行分类时,我们不保证选取二字串bigram作为特征单元的效果是最优的。

  3. 在进行训练模型时,请注意根据自己的语料大小设置相应的使用内存上限。例如语料大小为2GB的时候,至少设置使用内存大小为4GB(-Xmx4096m)。如若程序执行缓慢,请调大使用内存上限。

  4. 由于window系统上java使用内存的限制(大约在1GB),请避免在window系统上使用较大的语料进行训练。

开源协议

  1. THUCTC面向国内外大学、研究所、企业以及个人研究者免费开放源。

  2. 如有机构或个人拟将THUCTC用于商业目的,请发邮件至thunlp@gmail.com洽谈技术许可协议。

  3. 欢迎对该工具包的任何宝贵意见和建议,请发邮件至thunlp@gmail.com

  4. 如果您在THUCTC基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了清华大学THUCTC”,并按如下格式引用:

    • 中文:郭志芃,赵宇,郑亚斌,司宪策,刘知远,孙茂松. THUCTC:一个高效的中文文本分类工具包. 2016.

    • 英文: Zhipeng Guo, Yu Zhao, Yabin Zheng, Xiance Si, Zhiyuan Liu, Maosong Sun. THUCTC: An Efficient Chinese Text Classifier. 2016.

  5. 本工具包采用LibSVMLiblinear实现分类算法,特此致谢。该模块遵守LibSVM/Liblinear工具包指定的协议。

相关论文

作者

指导教师:Maosong Sun(孙茂松教授)

贡献者:Zhipeng Guo(郭志芃),Yu Zhao(赵宇),Yabin Zheng(郑亚斌),Xiance Si(司宪策),Zhiyuan Liu(刘知远).

使用者如有任何问题、建议和意见,欢迎发邮件至 thunlp@gmail.com