Home

Awesome

LKIS

This is a demo implementation of the following paper.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi, "Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition," in Advances in Neural Information Processing Systems (Proc. of NIPS), vol. 30, pp. 1130-1140, 2017.

arXiv preprint: https://arxiv.org/abs/1710.04340

Prerequisite

Files

Usage

python train.py [name] [options]
python predict.py [name] [options]

[name] specifies the name of the experiment.

Example

python train.py lorenz --numval 1 --delay 7 --dimobs 5
python predict.py lorenz --save

The result can be inspected using matlab/exp_lorenz.m

Important options

train.py

predict.py

Author

License

This project is licensed under the MIT License - see the LICENSE.txt file for details