Awesome
Some Pretrained Models for TensorLayer
Feel free to add more.This repository is implemented with TensorLayer2.0+.
Reinforcement Learning Examples
./rl_models/
contains pretrained models for each algorithm in reinforcement learning examples.
CNN for ImageNet
The tl.models
API description here, and the discussion for network architecture that can be easily use here.
Model | Code | Parameter | Top-1 Accuracy | Top-5 Accuracy |
---|---|---|---|---|
VGG 16 | code | model | 71.5 | 89.8 |
VGG 19 | code | model (from machrisaa/tensorflow-vgg) | 71.1 | 89.8 |
ResNet V1 50 | 75.2 | 92.2 | ||
ResNet V1 101 | resnet_v1_101_2016_08_28.tar.gz | 76.4 | 92.9 | |
ResNet V1 152 | resnet_v1_152_2016_08_28.tar.gz | 76.8 | 93.2 | |
ResNet V2 50 | resnet_v2_50_2017_04_14.tar.gz | 75.6 | 92.8 | |
ResNet V2 101 | resnet_v2_101_2017_04_14.tar.gz | 77.0 | 93.7 | |
ResNet V2 152 | resnet_v2_152_2017_04_14.tar.gz | 77.8 | 94.1 | |
ResNet V2 200 | TBA | 79.9* | 95.2* | |
Inception V1 | inception_v1_2016_08_28.tar.gz | 69.8 | 89.6 | |
Inception V2 | inception_v2_2016_08_28.tar.gz | 73.9 | 91.8 | |
Inception V3 | code | inception_v3_2016_08_28.tar.gz | 78.0 | 93.9 |
Inception V4 | 80.2 | 95.2 | ||
Xception | ||||
Inception-ResNet-v2 | 80.4 | 95.3 | ||
SqueezeNet V1 | code | model | ||
SqueezeNet V2 | ||||
MobileNet V1 | code | model | ||
MobileNet V2_1.4_224 | 74.9 | 92.5 | ||
MobileNet V2_1.0_224 | 71.9 | 91.0 | ||
NASNet-A_Mobile_224 | nasnet-a_mobile_04_10_2017.tar.gz | 74.0 | 91.6 | |
NASNet-A_Large_331 | nasnet-a_large_04_10_2017.tar.gz | 82.7 | 96.2 | |
PNASNet-5_Large_331 | pnasnet-5_large_2017_12_13.tar.gz | 82.9 | 96.2 | |
DenseNet | ||||
NASNet |
More examples in Awesome-TensorLayer