Home

Awesome

HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN

Dependencies

Older versions may also work but are not tested.

Dataset

All six setups can be downloaded on this Google Drive Link. After downloading, unzip the file and copy them to /data/ folder. The file structure should be

├── data
│   ├── setup1
│   │   ├── processed
│   │   │   ├── train_0.bin
│   │   │   ├── valid_0.bin
│   │   │   ├── test_0.bin
│   │   │   ├── ...
│   ├── ...
├── train.py
├── ...

Run

To run HTNet and the baseline methods, first specify a setup in {setup1, setup2, setup3, setup4, setup5, setup6}. Ramon, ATARI, Ramon+LSTM, ATARI+LSTM, and HTNet require to train on GPU. For these methods, specify which GPU to use using the --gpu option where gpu 0 is the default value.

For SINR:

python train.py --data <setup> --sinr

For GBRT:

python train.py --data <setup> --gbrt

For Ramon:

python train.py --data <setup> 

For ATARI:

python train.py --data <setup> --graph

For Ramon+LSTM:

python train.py --data <setup> --dynamic

For ATARI+LSTM:

python train.py --data <setup> --graph --dynamic

For HTNet:

python train.py --data <setup> --graph --hetero --dynamic