Awesome
HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN
Dependencies
Older versions may also work but are not tested.
- python >= 3.9.7
- numpy >= 1.20.3
- pytorch >= 1.10.2
- dgl >= 0.8.0
- xgboost >= 1.5.2
- scikit-learn >= 0.24.2
Dataset
All six setups can be downloaded on this Google Drive Link. After downloading, unzip the file and copy them to /data/ folder. The file structure should be
├── data
│ ├── setup1
│ │ ├── processed
│ │ │ ├── train_0.bin
│ │ │ ├── valid_0.bin
│ │ │ ├── test_0.bin
│ │ │ ├── ...
│ ├── ...
├── train.py
├── ...
Run
To run HTNet and the baseline methods, first specify a setup in {setup1, setup2, setup3, setup4, setup5, setup6}. Ramon, ATARI, Ramon+LSTM, ATARI+LSTM, and HTNet require to train on GPU. For these methods, specify which GPU to use using the --gpu option where gpu 0 is the default value.
For SINR:
python train.py --data <setup> --sinr
For GBRT:
python train.py --data <setup> --gbrt
For Ramon:
python train.py --data <setup>
For ATARI:
python train.py --data <setup> --graph
For Ramon+LSTM:
python train.py --data <setup> --dynamic
For ATARI+LSTM:
python train.py --data <setup> --graph --dynamic
For HTNet:
python train.py --data <setup> --graph --hetero --dynamic