Awesome
Robust Backdoor Detection for Deep Learning via Topological Evolution Dynamics
This is the official repository for the paper "Robust Backdoor Detection for Deep Learning via Topological Evolution Dynamics" presented at IEEE Symposium on Security and Privacy (S&P) 2024.
Source-Specific and Dynamic-Triggers (SSDT) Attack
To execute the Source-Specific and Dynamic-Triggers (SSDT) attack on the CIFAR-10, MNIST, or GTSRB dataset, use the following configuration:
- Command:
python train_SSDT.py
- Arguments:
--dataset [cifar10/mnist/gtsrb]
(replace with the desired dataset)--attack_mode SSDT
--n_iters 300
Example command for CIFAR-10:
python train_SSDT.py --dataset cifar10 --attack_mode SSDT --n_iters 300
Topological Evolution Dynamics (TED) Defense
To explore the TED defense methodology, use the TED.ipynb
Jupyter Notebook provided in this repository.