Home

Awesome

JavaScript Structs: Fixed Layout Objects and Some Synchronization Primitives

Stage: 2

Author: Shu-yu Guo (@syg)

Champion: Shu-yu Guo (@syg), Ron Buckton (@rbuckton)

Introduction

This proposal introduces four (4) logical features:

This proposal is intended to be minimal, but still useful by itself, without follow-up proposals.

The motivations are:

Like other shared memory features in JavaScript, it is high in expressive power and high in difficulty to use correctly. This proposal is both intended as an incremental step towards higher-level, easier-to-use (e.g. data-race free by construction) parallelism abstractions as well as an escape hatch for expert programmers who need the expressivity.

The two design principles that this proposal follows for shared memory are:

  1. Syntax that looks atomic ought to be atomic. (For example, the dot operator on shared structs should only access an existing field and does not tear.)
  2. There are no references from shared objects to non-shared objects. The shared and non-shared heaps are conceptually separate, with direct references only going one way.

Structs

Unshared structs are a refinement on JavaScript classes. They are declarative, like classes, but layout of struct instances are fixed.

Structs have the following properties:

Struct declarations use the struct keyword, and share their syntax with class declarations.

Some examples:

struct Box {
  constructor(x) { this.x = x; }
  x;
}

let box = new Box(0);
box.x = 42;  // x is declared
assertThrows(() => { box.y = 8.8; });        // structs are sealed
assertThrows(() => { box.__proto__ = {}; }); // structs are sealed
struct Point extends Box { // allowed because Box is also a struct
  constructor(x, y) {
    this.y = y;  // the this value is immediately usable
    super(x);    // calls the super constructor
    return {};   // the return value is discarded, no return override
  }

  distance(other) {
    return Math.sqrt((other.x - this.x) ** 2 +
                     (other.y - this.y) ** 2);
  }

  y;
}

let p = new Point(1, 2);
let fake = { x: 4, y: 5 };
// methods are non-generic
assertThrows(() => Point.prototype.distance.call(fake, p));
p.distance(fake); // allowed, the receiver is a Point

Shared Structs

Shared structs are structs with even more restricted behavior, so as to make them amenable to be shared between different agents. Their fields can be accessed in parallel by multiple agents.

Shared structs, in addition to the properties listed for structs above, have the following additional properties:

// main.js
shared struct SharedBox {
  x;
}

let sharedBox = new SharedBox();
let sharedBox2 = new SharedBox();

sharedBox.x = 42;          // x is declared and rhs is primitive
sharedBox.x = sharedBox2;  // x is declared and rhs is shared
assertThrows(() => { sharedBox.x = {}; }) // rhs is not a shared struct

// can programmatically test if a value can be shared
assert(Reflect.canBeShared(sharedBox2));
assert(!Reflect.canBeShared({}));

let worker = new Worker('worker.js');
worker.postMessage({ sharedBox });

sharedBox.x = "main";      // x is declared and rhs is primitive
console.log(sharedBox.x);
// worker.js
onmessage = function(e) {
  let sharedBox = e.data.sharedBox;
  sharedBox.x = "worker";  // x is declared and rhs is primitive
  console.log(sharedBox.x);
};

The above program is permitted to print out any interleaving:

Shared Arrays

Shared Arrays are a fixed-length arrays that may be shared across agents. They are a special case of shared structs. There is no special syntax for Shared Arrays. They have a read-only length property.

let sharedArray = new SharedArray(100);
assert(sharedArray.length === 100);
for (i = 0; i < sharedArray.length; i++) {
  // like shared structs, all elements are initialized to undefined
  assert(sharedArray[i] === undefined);
}

let worker = new Worker('worker_array.js');
worker.postMessage({ sharedArray });

sharedArray[0] = "main";
console.log(sharedArray[0]);
// worker_array.js
onmessage = function(e) {
  let sharedArray = e.data.sharedArray;
  sharedArray[0] = "worker";
  console.log(sharedArray[0]);
};

Like the shared struct example, the above program is also permitted to print out any interleaving:

Memory Model

By default, field accesses on shared structs are unordered. Sequentially consistent accesses are performed via the following new overloads on existing Atomics static methods.

The following pseudocode describes the new overloads.

class Atomics {
  // ... existing stuff

  // Performs a seq-cst load on struct[fieldName].
  static load(struct, fieldName);

  // Performs a seq-cst store of value in struct[fieldName].
  static store(struct, fieldName, value);

  // Performs a seq-cst exchange on struct[fieldName] with newValue.
  //
  // newValue must be a primitive or a shared struct.
  //
  // Returns the old value.
  static exchange(struct, fieldName, newValue);

  // Performs a seq-cst compare-exchange on struct[fieldName].
  //
  // If the existing value in struct[fieldName] is expected, replace it with
  // replacement.
  //
  // replacement must be a primitive or a shared struct.
  //
  // Returns the value in struct[fieldName] before the replacement,
  // regardless of whether the value was exchanged.
  static compareExchange(struct, fieldName, expected, replacement);
}

Shared struct field accesses can never tear, regardless of the memory order. That is, a read of a shared struct field sees exactly one write of a shared struct field, never a mix of multiple writes.

Mutex and Condition

Higher-level synchronization primitives are needed to aid in writing threadsafe code. This proposal adds Atomics.Mutex and Atomics.Condition.

Atomics.Mutex

Atomics.Mutex is a non-recursive mutex. The mutex itself is a shared struct with no fields. It is used via static methods on Atomics.Mutex. (If per-Realm prototypes become part of this proposal, those static methods will become prototype methods.)

The following pseudocode describes the API.

shared struct Atomics.Mutex {
  // Creates a new mutex.
  constructor();

  // Attempt to acquire the lock on mutex.
  //
  // If the mutex is already locked, this blocks the agent until the lock is
  // acquired.
  //
  // If unlockToken is not undefined, it must be an empty UnlockToken.
  //
  // If unlockToken is undefined, returns a new UnlockToken.
  // Otherwise return the unlockToken that was passed in.
  static lock(mutex: Mutex,
              unlockToken: UnlockToken|undefined = undefined)
             : UnlockedToken;

  // Attempt to acquire the lock on mutex.
  //
  // If timeout is not Infinity, only block for timeout milliseconds. If
  // the operation timed out without acquiring the lock, returns
  // null.
  //
  // If timeout is 0, returns immediately without blocking if the lock
  // cannot be acquired.
  //
  // unlockToken behaves as it does in the lock method.
  static lockIfAvailable(mutex: Mutex,
                         timeout: Number,
                         unlockToken: UnlockToken|undefined = undefined)
                        : UnlockToken|null;
}

A mutex can only be unlocked via UnlockTokens, which are unlock capabilities. These tokens are ordinary objects, not shared structs. For high-performance applications, an application can allocate an empty UnlockToken and reuse it. This API is inspired by Rust and aims to minimize misuse (e.g. double unlocks).

class Atomics.Mutex.UnlockToken {
  // Creates an empty UnlockToken.
  constructor();

  // Returns true if this token is non-empty.
  get locked(): bool;

  // If this token is non-empty, unlock the underlying mutex and returns true.
  // Otherwise returns false.
  unlock(): bool;

  // Like unlock, but returns undefined instead of bool.
  [Symbol.dispose](): undefined;
}

For example,

shared struct MicrosoftSharePoint {
  x;
  y;
  mutex;
}

let point = new MicrosoftSharePoint();
point.mutex = new Atomics.Mutex();

let worker = new Worker('worker_mutex.js');
worker.postMessage({ point });

// assume this agent can block
{
  using lock = Atomics.Mutex.lock(point.mutex);
  point.x = "main";
  point.y = "main";
}

{
  using lock = Atomics.Mutex.lock(point.mutex);
  console.log(point.x, point.y);
}
// worker_mutex.js
onmessage = function(e) {
  let point = e.data.point;
  {
    using lock = Atomics.Mutex.lock(point.mutex);
    point.x = "worker";
    point.y = "worker";
  }
};

The above program prints one of the following:

That is, because point the x and y fields are accessed under lock, no agent can observe a mix of main and worker values.

Atomics.Condition

Atomics.Condition is a condition variable. It is a shared struct with no fields. It is used via static methods on Atomics.Condition. (If per-Realm prototypes become part of this proposal, those static methods will become prototype methods.)

The following pseudocode describes the API.

shared struct Atomics.Condition {
  // Creates a new condition variable.
  constructor();

  // Atomically unlocks the unlockToken and blocks the current agent until cv
  // is notified.
  //
  // unlockToken must not be empty.
  //
  // When the agent is resumed, the lock underlying mutex in unlockToken is
  // reacquired, blocking if necessary.
  //
  // Returns undefined.
  static wait(cv: Condition,
              unlockToken: UnlockToken): undefined

  // Atomically unlocks the unlockToken and blocks the current agent until cv
  // is notified or timed out.
  //
  // unlockToken must not be empty.
  //
  // timeout is in milliseconds.
  //
  // If predicate is not undefined, this method returns after predicate returns
  // true, or if timed out. If timed out, the final return value of the
  // predicate is returned. Whenever the predicate is executing, the lock on the
  // underlying mutex of unlockToken is acquired.
  //
  // If predicate is undefined, returns true if the wait was notified, and false
  // if timed out.
  static waitFor(cv: Condition,
                 unlockToken: UnlockToken,
                 timeout: Number,
                 predicate: Callable|undefined): bool

  // Notifies count waiters waiting on the condition variable cv.
  //
  // Returns the number of waiters that were notified.
  static notify(cv: Condition,
                count: Number = Infinity)
               : Number;
}

Open Questions

Attaching methods to shared structs

Because functions are deeply unshareable, shared structs currently do not have methods. However, this is a severe ergonomic pain point. It is also counter to encapsulation, which may have real harm in encouraging more thread-unsafe code. The current direction being explored to enable methods, which is undergoing discussion, is to give shared structs the following additional features:

  1. A per-Realm prototype object, which is an ordinary object and thus can contain methods. This corresponds to making the [[Prototype]] internal field on shared structs thread-local storage.
  2. A correlation mechanism to correlate evaluations of the same "logical" shared struct declaration across different agents.

This is an involved topic and has its own document. See ATTACHING-BEHAVIOR.md.

Future Work

Asynchronous locking and waiting

Asynchronous locking is planned upcoming work but is out of scope of this proposal. See ASYNC-LOCKING-WAITING.md for lockAsync and waitAsync.

WasmGC interoperability

The WasmGC proposal adds fixed layout, garbage-collected objects to Wasm. While the details of the type system of these objects are yet to be nailed down, interoperability with JavaScript is a requirement.

WasmGC objects have opaque storage and are not aliased by linear memory, so they cannot be exposed as all Wasm memory is exposed today via ArrayBuffers. We propose structs to be the reflection of WasmGC objects in JS.

WasmGC objects exposed to JS should behave the same as structs, modulo extra type checking that WasmGC require that JS structs do not. JS structs is also a good foundation for reflecting into Wasm as WasmGC objects, but that is currently left as future work as it may need a typed field extensions to be worthwhile.

Further, WasmGC itself will eventually have multithreading. It behooves us to maintain a single memory model between JavaScript and Wasm as we have today, even with higher-level object abstractions.

Out-of-Scope

Value semantics, immutability, and operator overloading

This proposal does not intend to explore the space of objects with value semantics, including immutability and operator overloading. Structs have identity like other objects and are designed to be used like other objects. Value semantics is a sufficient departure that it may be better solved with other proposals that focus on that space.

Sophisticated type systems

This proposal does not intend to explore sophisticated type and runtime guard systems. It is even more minimal than the closest spiritual ancestor, the Typed Objects proposal, in that we do not propose integral types for sized fields. (Typed and sized fields are reserved for future work.)

Binary data overlay views

This proposal does not intend to explore the space of overlaying structured views on binary data in an ArrayBuffer. This is a requirement arising from the desire for WasmGC integration, and WasmGC objects are similarly opaque.

Structured overlays are fundamentally about aliasing memory, which we feel is both a different problem domain, has significant performance downsides, and sufficiently solvable today in userland. For example, see buffer-backed objects.

Notably, structured overlays in JavaScript essentially involves allocating unshared wrappers per agent. If an application has shared state with a complex structure, such as a large object graph, recreating that structure via a set of wrappers per agent negates the memory use benefits of shared memory. Structured overlays would work for specific application architectures where the structure of the shared state itself is simple, like a byte buffer.

Implementation guidance

Immutable shapes

Structs are declared with fixed layout up front. Engines should make an immutable shape for such objects. Optimizers can optimize field accesses without worrying about deopts.

Shared structs: make sure fields are pointer-width and aligned

Shared structs should store fields such that underlying architectures can perform atomic stores and loads. This usually eans the fields should be at least pointer-width and aligned.

Shared structs: strings will be difficult

Except for strings, sharing primitives in the engine is usually trivial, especially for NaN-boxing implementations.

Strings in production engines have in-place mutation to transition representation in order to optimize for different use ases (e.g. ropes, slices, canonicalized, etc). Sharing strings will likely be the most challenging part of the mplementation.

It is possible to support sharing strings by copying-on-sharing, but may be too slow. If possible, lockfree mplementations of in-place mutations above is ideal.

Synchronization primitives: they must be moving GC-safe

Production engines use moving garbage collectors, such as generational collectors and compacting collectors. If JS ynchronization primitives are implemented under the hood as OS-level synchronization primitives, those primitives most ikely depend on an unchanging address in memory and are not moving GC-safe.

Engines can choose to pin these objects and make them immovable.

Engines can also choose to implement synchronization primitives entirely in userspace. For example, WebKit's ParkingLot](https://webkit.org/blog/6161/locking-in-webkit/) is a userspace implementation of Linux futexes. This may have other benefits, such as improved and tuneable performance.