Awesome
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task
Source code of our EMNLP 2018 paper: SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task .
:+1: 03/20/2022
: We open-sourced a simple but SOTA model (just T5) for 20 tasks including text-to-SQL! Please check out our code in the UnifiedSKG repo!!
Citation
@InProceedings{Yu&al.18.emnlp.syntax,
author = {Tao Yu and Michihiro Yasunaga and Kai Yang and Rui Zhang and Dongxu Wang and Zifan Li and Dragomir Radev},
title = {SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task},
year = {2018},
booktitle = {Proceedings of EMNLP},
publisher = {Association for Computational Linguistics},
}
Environment Setup
- The code uses Python 2.7 and Pytorch 0.2.0 GPU.
- Install Python dependency:
pip install -r requirements.txt
Download Data, Embeddings, Scripts, and Pretrained Models
- Download the dataset from the Spider task website to be updated, and put
tables.json
,train.json
, anddev.json
underdata/
directory. - Download the pretrained Glove, and put it as
glove/glove.%dB.%dd.txt
- Download
evaluation.py
andprocess_sql.py
from the Spider github page - Download preprocessed train/dev datasets and pretrained models from here. It contains:
-
generated_datasets/
generated_data
for original Spider training datasets, pretrained models can be found atgenerated_data/saved_models
generated_data_augment
for original Spider + augmented training datasets, pretrained models can be found atgenerated_data_augment/saved_models
Generating Train/dev Data for Modules
You could find preprocessed train/dev data in generated_datasets/
.
To generate them by yourself, update dirs under TODO
in preprocess_train_dev_data.py
, and run the following command to generate training files for each module:
python preprocess_train_dev_data.py train|dev
Folder/File Description
data/
contains raw train/dev/test data and table filegenerated_datasets/
described as abovemodels/
contains the code for each module.evaluation.py
is for evaluation. It usesprocess_sql.py
.train.py
is the main file for training. Usetrain_all.sh
to train all the modules (see below).test.py
is the main file for testing. It usessupermodel.sh
to call the trained modules and generate SQL queries. In practice, and usetest_gen.sh
to generate SQL queries.generate_wikisql_augment.py
for cross-domain data augmentation
Training
Run train_all.sh
to train all the modules.
It looks like:
python train.py \
--data_root path/to/generated_data \
--save_dir path/to/save/trained/module \
--history_type full|no \
--table_type std|no \
--train_component <module_name> \
--epoch <num_of_epochs>
Testing
Run test_gen.sh
to generate SQL queries.
test_gen.sh
looks like:
SAVE_PATH=generated_datasets/generated_data/saved_models_hs=full_tbl=std
python test.py \
--test_data_path path/to/raw/test/data \
--models path/to/trained/module \
--output_path path/to/print/generated/SQL \
--history_type full|no \
--table_type std|no \
Evaluation
Follow the general evaluation process in the Spider github page.
Cross-Domain Data Augmentation
You could find preprocessed augmented data at generated_datasets/generated_data_augment
.
If you would like to run data augmentation by yourself, first download wikisql_tables.json
and train_patterns.json
from here, and then run python generate_wikisql_augment.py
to generate more training data. Second, run get_data_wikisql.py
to generate WikiSQL augment json file. Finally, use merge_jsons.py
to generate the final spider + wikisql + wikisql augment dataset.
Acknowledgement
The implementation is based on SQLNet. Please cite it too if you use this code.