Awesome
<div align="center"> <h1>Voy</h1> <strong>A WASM vector similarity search engine written in Rust</strong> </div>- Tiny: 75KB gzipped, 69KB brotli.
- Fast: Create the best search experience for the users. Voy uses k-d tree to index and provide fast search
- Tree Shakable: Optimize bundle size and enable asynchronous capabilities for modern Web API, such as Web Workers.
- Resumable: Generate portable embeddings index anywhere, anytime.
- Worldwide: Designed to deploy and run on CDN edge servers.
🚜 Work in Progress
Voy is under active development. As a result, the API is not stable. Please be aware that there might be breaking changes before the upcoming 1.0 release.
A sneak peek of what we are working on:
- Built-in text transformation in WebAssembly: As of now, voy relies on JavaScript libraries like
transformers.js
to generate text embeddings. See Usage for more detail.- Index update: Currently it's required to re-build the index when a resource update occurs.
- TypeScript support: Due to the limitation of WASM tooling, complex data types are not auto-generated.
Installation
# with npm
npm i voy-search
# with Yarn
yarn add voy-search
# with pnpm
pnpm add voy-search
APIs
class Voy
The Voy class encapsulates an index and exposes all the public methods Voy has to offer.
class Voy {
/**
* By instantiating with a resource, Voy will construct the index. If the resource is
* absent, it will construct an empty index. Calling Voy.index() later on will override
* the empty index.
* @param {Resource | undefined} resource
*/
constructor(resource?: Resource);
/**
* Index given resource. Voy.index() is designed for the use case where a Voy instance
* is instantiated without a resource. It will override the existing index. If you'd like
* to keep the existing index, you can use Voy.add() to add your resource to the index.
* @param {Resource} resource
*/
index(resource: Resource): void;
/**
* Search top k results with given query embedding.
* @param {Float32Array} query: Query Embedding
* @param {number} k: Number of items in the search result
* @returns {SearchResult}
*/
search(query: Float32Array, k: number): SearchResult;
/**
* Add given resource to the index.
* @param {Resource} resource
*/
add(resource: Resource): void;
/**
* Remove given resource from the index.
* @param {Resource} resource
*/
remove(resource: Resource): void;
/**
* Remove all resources from the index.
*/
clear(): void;
/**
* @returns {number}
*/
size(): number;
/**
* Serialize a Voy instance.
* @returns {string}
*/
serialize(): string;
/**
* Deserialize a serialized index into a Voy instance.
* @param {string} serialized_index
* @returns {Voy}
*/
static deserialize(serialized_index: string): Voy;
}
interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
interface SearchResult {
neighbors: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
}>;
}
Individual Functions
Besides the Voy class, Voy also exports all the instance methods as individual functions.
index(resource: Resource): SerializedIndex
It indexes the given resource and returns a serialized index.
Parameters
interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
Return
type SerializedIndex = string;
search(index: SerializedIndex, query: Query, k: NumberOfResult): SearchResult
It deserializes the given index and search for the k
nearest neighbors of the query.
Parameter
type SerializedIndex = string;
type Query = Float32Array; // embeddings of the search query
type NumberOfResult = number; // K top results to return
Return
interface SearchResult {
neighbors: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
}>;
}
add(index: SerializedIndex, resource: Resource): SerializedIndex
It adds resources to the index and returns an updated serialized index.
Parameter
type SerializedIndex = string;
interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
Return
type SerializedIndex = string;
remove(index: SerializedIndex, resource: Resource): SerializedIndex
It removes resources from the index and returns an updated serialized index.
Parameter
type SerializedIndex = string;
interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
Return
type SerializedIndex = string;
clear(index: SerializedIndex): SerializedIndex
It removes all items from the index and returns an empty serialized index.
Parameter
type SerializedIndex = string;
Return
type SerializedIndex = string;
size(index: SerializedIndex): number;
It returns the size of the index.
Parameter
type SerializedIndex = string;
Usage
With Transformers
As of now, voy relies on libraries like transformers.js
and web-ai
to generate embeddings for text:
import { TextModel } from "@visheratin/web-ai";
const { Voy } = await import("voy-search");
const phrases = [
"That is a very happy Person",
"That is a Happy Dog",
"Today is a sunny day",
];
const query = "That is a happy person";
// Create text embeddings
const model = await (await TextModel.create("gtr-t5-quant")).model;
const processed = await Promise.all(phrases.map((q) => model.process(q)));
// Index embeddings with voy
const data = processed.map(({ result }, i) => ({
id: String(i),
title: phrases[i],
url: `/path/${i}`,
embeddings: result,
}));
const resource = { embeddings: data };
const index = new Voy(resource);
// Perform similarity search for a query embeddings
const q = await model.process(query);
const result = index.search(q.result, 1);
// Display search result
result.neighbors.forEach((result) =>
console.log(`✨ voy similarity search result: "${result.title}"`)
);
Multiple Indexes
import { TextModel } from "@visheratin/web-ai";
const { Voy } = await import("voy-search");
const phrases = [
"That is a very happy Person",
"That is a Happy Dog",
"Today is a sunny day",
"Sun flowers are blooming",
];
const model = await (await TextModel.create("gtr-t5-quant")).model;
const processed = await Promise.all(phrases.map((q) => model.process(q)));
const data = processed.map(({ result }, i) => ({
id: String(i),
title: phrases[i],
url: `/path/${i}`,
embeddings: result,
}));
const resourceA = { embeddings: data.slice(0, 2) };
const resourceB = { embeddings: data.slice(2) };
const indexA = new Voy(resourceA);
const indexB = new Voy(resourceB);
License
Licensed under either of
- Apache License, Version 2.0, (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Sponsor
<a href="https://reflect.app" target="_blank"><img src="https://avatars.githubusercontent.com/u/73365487?s=64&v=4"></a> <a href="https://github.com/markhughes" target="_blank"><img src="https://avatars.githubusercontent.com/u/1357323?s=64&v=4"></a>
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.