Home

Awesome

sahajBERT

Downstream evaluation

We have two downstream task NER and NCC

The datasets have been used here are:

NER: wikiann, bn

NCC: indic_glue, sna.bn

To read more about the datasets visit WikiANN, IndicGLUE

Model link - sahajBERT-xlarge

NER

1. Clone the sahajbert repo and prepare the env by intalling requirements.
git clone https://github.com/tanmoyio/sahajBERT.git
cd sahajbert
pip install -r requirements.txt
pip install -q https://github.com/learning-at-home/hivemind/archive/sahaj2.zip
pip install seqeval
2. Run the following command
!python train_ner.py \
  --model_name_or_path Upload/sahajbert2 --output_dir sahajbert/ner \
  --learning_rate 3e-5 --max_seq_length 256 --num_train_epochs 20 \
  --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --gradient_accumulation_steps 8 \
  --early_stopping_patience 3 --early_stopping_threshold 0.01
This will give you a prompt, and you need to provide your Huggingface username and password. (We don't store huggingface password) this is only to allow your score to be reflected in the leaderboard.

Leaderboard link - sahajBERT2-xlarge-ner

If you are using GPU, or finetuning it with colab GPU then you might want to adjust the per_device_train_batch_size, per_device_train_batch_size.

NCC

!python train_ncc.py \
  --model_name_or_path Upload/sahajbert2 --output_dir sahajbert/ner \
  --learning_rate 1e-5 --max_seq_length 128 --num_train_epochs 20 \
  --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --gradient_accumulation_steps 8 \
  --early_stopping_patience 3 --early_stopping_threshold 0.01