Home

Awesome

Switchable Normalization

Switchable Normalization is a normalization technique that is able to learn different normalization operations for different normalization layers in a deep neural network in an end-to-end manner.

Update

Citation

This repository provides imagenet classification results and models trained with Switchable Normalization. You are encouraged to cite the following paper if you use SN in research.

@article{SwitchableNorm,
  title={Differentiable Learning-to-Normalize via Switchable Normalization},
  author={Ping Luo and Jiamin Ren and Zhanglin Peng and Ruimao Zhang and Jingyu Li},
  journal={International Conference on Learning Representation (ICLR)},
  year={2019}
}

Overview of Results

Image Classification in ImageNet

Comparisons of top-1 accuracies on the validation set of ImageNet, by using ResNet50 trained with SN, BN, and GN in different batch size settings. The bracket (·, ·) denotes (#GPUs,#samples per GPU). In the bottom part, “GN-BN” indicates the difference between the accuracies of GN and BN. The “-” in (8, 1) of BN indicates it does not converge.

<table> <tbody> <tr class="odd"> <td style="text-align: left;"></td> <td style="text-align: left;">(8,32)</td> <td style="text-align: left;">(8,16)</td> <td style="text-align: left;">(8,8)</td> <td style="text-align: left;">(8,4)</td> <td style="text-align: left;">(8,2)</td> <td style="text-align: left;">(1,16)</td> <td style="text-align: left;">(1,32)</td> <td style="text-align: left;">(8,1)</td> <td style="text-align: left;">(1,8)</td> </tr> <tr class="even"> <td style="text-align: center;">BN <span class="citation" data-cites="BN"></span></td> <td style="text-align: left;">76.4</td> <td style="text-align: left;">76.3</td> <td style="text-align: left;">75.2</td> <td style="text-align: left;">72.7</td> <td style="text-align: left;">65.3</td> <td style="text-align: left;">76.2</td> <td style="text-align: left;">76.5</td> <td style="text-align: left;">–</td> <td style="text-align: left;">75.4</td> </tr> <tr class="odd"> <td style="text-align: center;">GN <span class="citation" data-cites="GN"></span></td> <td style="text-align: left;">75.9</td> <td style="text-align: left;">75.8</td> <td style="text-align: left;">76.0</td> <td style="text-align: left;">75.8</td> <td style="text-align: left;"><strong>75.9</strong></td> <td style="text-align: left;">75.9</td> <td style="text-align: left;">75.8</td> <td style="text-align: left;"><strong>75.5</strong></td> <td style="text-align: left;">75.5</td> </tr> <tr class="even"> <td style="text-align: center;">SN</td> <td style="text-align: left;"><strong>76.9</strong></td> <td style="text-align: left;"><strong>76.7</strong></td> <td style="text-align: left;"><strong>76.7</strong></td> <td style="text-align: left;"><strong>75.9</strong></td> <td style="text-align: left;">75.6</td> <td style="text-align: left;"><strong>76.3</strong></td> <td style="text-align: left;"><strong>76.6</strong></td> <td style="text-align: left;">75.0<sup>*</sup></td> <td style="text-align: left;"><strong>75.9</strong></td> </tr> <tr class="odd"> <td style="text-align: left;"><span>GN</span><span class="math inline">−</span><span>BN</span></td> <td style="text-align: left;">-0.5</td> <td style="text-align: left;">-0.5</td> <td style="text-align: left;">0.8</td> <td style="text-align: left;">3.1</td> <td style="text-align: left;"><span>10.6</span></td> <td style="text-align: left;">-0.3</td> <td style="text-align: left;">-0.7</td> <td style="text-align: left;">–</td> <td style="text-align: left;">0.1</td> </tr> <tr class="even"> <td style="text-align: left;"><span>SN</span><span class="math inline">−</span><span>BN</span></td> <td style="text-align: left;"><span>0.5</span></td> <td style="text-align: left;"><span>0.4</span></td> <td style="text-align: left;"><span>1.5</span></td> <td style="text-align: left;">3.2</td> <td style="text-align: left;">10.3</td> <td style="text-align: left;">0.1</td> <td style="text-align: left;">0.1</td> <td style="text-align: left;">–</td> <td style="text-align: left;">0.5</td> </tr> <tr class="odd"> <td style="text-align: left;"><span>SN</span><span class="math inline">−</span><span>GN</span></td> <td style="text-align: left;"><span>1.0</span></td> <td style="text-align: left;"><span>0.9</span></td> <td style="text-align: left;"><span>0.7</span></td> <td style="text-align: left;">0.1</td> <td style="text-align: left;">-0.3</td> <td style="text-align: left;">0.4</td> <td style="text-align: left;">0.8</td> <td style="text-align: left;">-0.5</td> <td style="text-align: left;">0.4</td> </tr> </tbody> </table> *For (8,1), SN contains IN and LN without BN, as BN is the same as IN in training.

Model Zoo

We provide models pretrained with SN on ImageNet, and compare to those pretrained with BN as reference. If you use these models in research, please cite the SN paper. The configuration of SN is denoted as (#GPUs, #images per GPU).

ModelTop-1<sup>*</sup>Top-5<sup>*</sup>EpochsLR SchedulerWeight DecayDownload
ResNet101v2+SN (8,32)78.81%94.16%120warmup + cosine lr1e-4[Google Drive] [Baidu Pan]
ResNet101v1+SN (8,32)78.54%94.10%120warmup + cosine lr1e-4[Google Drive] [Baidu Pan]
ResNet50v2+SN (8,32)77.57%93.65%120warmup + cosine lr1e-4[Google Drive] [Baidu Pan]
ResNet50v1+SN (8,32)77.49%93.32%120warmup + cosine lr1e-4[Google Drive] [Baidu Pan]
ResNet50v1+SN (8,32)76.92%93.26%100Initial lr=0.1 decay=0.1 steps[30,60,90,10]1e-4[Google Drive] [Baidu Pan]
ResNet50v1+SN (8,4)75.85%92.7%100Initial lr=0.0125 decay=0.1 steps[30,60,90,10]1e-4[Google Drive] [Baidu Pan]
ResNet50v1+SN (8,1)<sup></sup>75.94%92.7%100Initial lr=0.003125 decay=0.1 steps[30,60,90,10]1e-4[Google Drive] [Baidu Pan]
ResNet50v1+BN75.20%92.20%--stepwise decay--[TensorFlow models]
ResNet50v1+BN76.00%92.98%--stepwise decay--[PyTorch Vision]
ResNet50v1+BN75.30%92.20%--stepwise decay--[MSRA]
ResNet50v1+BN75.99%92.98%--stepwise decay--[FB Torch]

*single-crop validation accuracy on ImageNet (a 224x224 center crop from resized image with shorter side=256)

†For (8,1), SN contains IN and LN without BN, as BN is the same as IN in training. When using this model, you should add using_bn : False in yaml file.

License

All materials in this repository are released under the CC-BY-NC 4.0 LICENSE.