Awesome
Locating_Counting_with_a_Depth_Prior
[TPAMI] Locating and Counting Heads in Crowds With a Depth Prior [Paper]
Dataset
Download or generate the virtual dataset from the ShanghaiTechRGBDSyn repository.
Download ShanghaiTechRGBD dataset from OneDrive.
Depth Completion
Style Transfer
By using SG-GAN.
Train
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./tools/train_GTAV_metric.py \
--dataset GTAV --dataroot /group/crowd_counting/GTAV-ours/ \
--cfg_file lib/configs/resnext50_32x4d_GTAV --lr 0.05 --batchsize 8
If you have high capacity GPUs, we recommend training with larger size images.
Inference
python ./tools/test_RGBD_metric.py \
--dataset RGBD --dataroot /p300/data/Dataset/SIST_RGBD/RGBDmerge_540P/Part_A/ \
--cfg_file lib/configs/resnext50_32x4d_GTAV \
--load_ckpt checkpoint.pth
Acknowledgements
This repository borrows partially from VNL and MAML.
Citation
If you find this repository useful for your research, please use the following:
@article{lian2021locating,
title={Locating and Counting Heads in Crowds With a Depth Prior},
author={Lian, Dongze and Chen, Xianing and Li, Jing and Luo, Weixin and Gao, Shenghua},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021},
publisher={IEEE}
}